Впрочем, есть и еще более простой вариант наномотора, у которого не три нанотрубки, а только две. Правда, в этом случае внутренняя трубка должна быть одним концом погружена в какую-нибудь проводящую жидкость, например в ртуть.
К сожалению, новый мотор существует пока лишь в расчетах.
А чтобы убедиться в их справедливости, необходимо проделать эксперимент, который запросто может спутать все карты. ГА
Удивительный универсальный закон открыли физики из Университета Сантьяго в Чили и Чикагского университета.
Оказывается, форма конца листа бумаги или любого другого материала, отслоившегося от внутренней части рулона, всегда образует с ним строго определенный угол.
Возьмите любой лист бумаги и сверните в рулон. Нетрудно заметить, что внутри лист не будет лежать на окружности. Его конец, занимающий на окружности 125,2 градуса, слегка отслоится и образует с ней острый угол 24,1 градуса. Так лист ведет себя, чтобы минимизировать энергию упругой деформации.
Интуиция подсказывает, что форма конца листа внутри рулона должна как-то сложно зависеть от диаметра рулона, толщины и упругости материала. Но, оказывается, это не так! Форма конца листа и углы универсальны, если в ненапряженном состоянии он плоский.
Ученым удалось строго доказать универсальность "закона скручивания" и проверить его в многочисленных экспериментах.
Отклонение от угла 24,1 никогда не превышало одного градуса.
Но самое удивительное, что этот закон мог быть открыт еще дватри столетия назад. По крайней мере, уже тогда были известны все законы упругости и развит необходимый математический аппарат. Конечно, строго доказать это утверждение очень не просто, но гении прошлого справлялись и с более трудными задачами. По всей видимости, такая мысль просто никому не пришла в голову. Да и сегодня не очень ясно, как можно использовать это явление с пользой для дела. Впрочем, во время своих изысканий ученые обнаружили похожие закономерности для листов, скрученных в конус, и для закрученных волокон. А это уже ближе к задачам, возникающим при анализе свертывания белков, упаковки молекул ДНК и ряду других приложений. ГА
Новое нанопокрытие, существенно облегчающее процесс кипения жидкости, предложили ученые из Ренсселерского политехнического института (Rensselaer Polytechnic Institute). Покрытие может пригодиться для тепловых труб и систем жидкостного охлаждения компьютерных чипов.
Кипение жидкости, особенно на твердой поверхности, к которой подводится тепловой поток, очень непростой процесс.
Чтобы в этом убедиться, достаточно послушать, как по-разному может шуметь обыкновенный чайник. Дело в том, что жидкости нужен хотя бы маленький пузырек воздуха или пара, чтобы было куда испаряться. А для образования такого пузырька в объеме чистой жидкости нужна значительная энергия. Вот почему чистую жидкость можно значительно перегреть, что порой заканчивается взрывным вскипанием.
На поверхности того же чайника, котла или системы охлаждения чипа обычно имеются неоднородности и дефекты различных размеров, которые служат центрами парообразования, являясь пристанищем для микропузырьков воздуха или пара. Жидкость начинает испаряться в эти "зародыши", они растут, отделяются от поверхности и всплывают. К сожалению, большие каверны с воздухом используются для образования пузырька только один раз, а затем заполняются жидкостью. А чтобы жидкость начала испаряться в нанокаверну с очень маленьким пузырьком, ее нужно заметно перегреть.
Кроме того, если к поверхности подводить слишком много тепла, пузырьки на ней начинают расти слишком быстро, сливаются в сплошную пленку пара, которая изолирует поверхность от остальной жидкости, резко снижая теплоотдачу.
Наступает так называемый кризис кипения, который может разрушить устройство.
Чтобы отдалить кризис кипения, ученые давно придумали делать поверхность шершавой или покрывать ее тонким слоем пористого материала. Однако новое покрытие из густого леса медных наностержней, выращенных на медной подложке, обещает побить все рекорды. Высота таких стержней около четырехсот нанометров, и они образуют нечто похожее на игольчатый радиатор. Стержни обеспечивают надежный тепловой контакт между охлаждаемой поверхностью и жидкостью, а также достаточно места для образования новых пузырьков пара, которые могут легко покинуть поверхность. Такой "нанолес" обеспечивает стабильное образование пузырьков и повышает эффективность охлаждения, позволяя снимать с той же поверхности больший тепловой поток.
По мнению экспериментаторов, их новое нанопокрытие найдет применение не только в электронике, но и во многих отраслях промышленности, где требуется превращать различные жидкости в пар. ГА
Революцию в электронной микроскопии уже спустя несколько месяцев обещает молодая английская компания NFAB, работающая в тесном содружестве с учеными из Солфордского и других европейских университетов. Там разрабатывается сканирующий электронный микроскоп принципиально нового типа, способный поместиться в миниатюрный чип и поз во ляющий разглядеть даже отдельные молекулы.
Современные сканирующие электронные микроскопы это дорогие установки внушительных размеров, в которых созданы необходимые условия (глубокий вакуум, напряжение в десятки киловольт, сложнейшая система электронных линз и детекторов). Лучшие из них имеют разрешение в пять сотых нанометра, но большинство, из-за трудности фокусировки электронных пучков, обеспечивают разрешение не более десяти нанометров.
И вот всю эту груду дорогостоящего оборудования ученые предлагают заменить небольшими доступными чипами, которые будут изготавливаться по технологии микромеханических устройств с предельным напряжением в несколько сотен вольт.
Типичное разрешение у них достигнет одной сотой нанометра — в пять раз лучше, чем у рекордных образцов их старших собратьев. Кроме того, энергия электронного пучка и токи в новых микроскопах будут на несколько порядков меньше, что позволит исследовать даже "нежные" объекты вроде живых белков и ДНК.
Новинка чем-то похожа на туннельный или атомно-силовой сканирующий микроскоп. Электроны у нее испускает не большой горячий катод, а единственный атом золота на острие нанопирамидки, которая закреплена на конце подвижного кронштейна. Затем электроны пролетают через отверстия нескольких фокусирующих пластин из металла и кремния, на которые подается управляющее напряжение. Преодолев всего пять-десять микрон, электроны достигают изучаемого образца и, отражаясь от него, как обычно, попадают в детектор.
По расчетам разработчиков, высокого разрешения в новом микроскопе гораздо легче достичь благодаря тому, что электроны летят до образца не несколько десятков сантиметров, а всего несколько микрон, их в пучке мало, а значит, они меньше мешают друг другу. Однако использование только электростатических электронных линз сильно ограничивает возможности фокусировки электронов и коррекции аберраций.
Многие специалисты с энтузиазмом восприняли идеи, заложенные в новом электронном сканирующем микроскопе, хотя и скептически относятся к оценкам его рекордного разрешения.
Флуктуации энергии электронов и другие неоднородности могут легко разрушить теоретическую идиллию. Чтобы выяснить, кто из ученых окажется прав, остается подождать примерно полгода, когда появится первый рабочий прототип нового микроскопа. Но уже очевидно, что такие устройства будут весьма востребованы электронной промышленностью. ГА