Журнал

С помощью электронного микроскопа удалось разглядеть, что стенки трубок имеют толщину около микрона и состоят из прямоугольных пор размером от сотен нанометров до нескольких микрон. Стенки пор, в свою очередь, имеют слоистую структуру, как у графита. Колоссальные углеродные трубки очень легки, их плотность не превышает десяти миллиграмм на кубический сантиметр. Легкость сочетается с прочностью, которая на порядок выше, чем у лучших волокон из углеродных нанотрубок; в тридцать раз выше, чем у кевлара; и в двести раз выше, чем у хлопка. Электрическая проводимость колоссальных трубок на порядок больше, чем у волокон из многослойных углеродных нанотрубок, и к тому же растет с повышением температуры. Кроме того, они очень гибки и даже упруги, поскольку могут растягиваться на три процента своей длины, прежде чем в них начинают появляться дефекты.

Такое сочетание свойств и подходящие размеры делает заманчивым применение колоссальных углеродных трубок вместо обычных текстильных волокон для изготовления прочных тканей и даже бронежилетов. Причем для этого можно использовать обычные ткацкие станки и другое текстильное оборудование. Из таких трубок удастся изготавливать очень прочные и легкие композиты. Отдельные трубки могут пригодиться в медицине и, возможно, в электронике и микромеханике.

О конкретных коммерческих приложениях колоссальных углеродных трубок говорить пока рано. Сейчас ученые продолжают их изучение и стремятся усовершенствовать технологию изготовления. Но не исключено, что это открытие станет знаковым.

Вместо того чтобы получать новые материалы на наномасштабах, а потом придумывать, как изготовить из них что-то полезное привычных размеров, технологи будут сразу выстраивать атомы в практически готовый продукт. ГА

Зеркало для антивещества

К удивительным выводам пришла группа итальянских физиков после подробного анализа экспериментов двенадцатилетней давности. Оказывается, около четверти антипротонов с низкой энергией, вместо того чтобы аннигилировать, просто отражаются от слоя алюминия. Возможно, этот эффект подскажет новые способы хранения антивещества.

Свои эксперименты итальянцы проводили в Европейской лаборатории CERN с 1990 по 1996 год. Они изучали, как медленные антипротоны с энергией 1–10 килоэлектронвольт взаимодействуют с обычным веществом, возбуждая в нем экзотические атомные состояния. В эксперименте антипротоны, прежде чем попасть в мишень, пролетали сквозь цилиндр диаметром 25 и длиной 75 см, заполненный небольшим количеством водорода или гелия. Когда антипротон сталкивался с ядром атома газа, он аннигилировал с протоном, а координаты и время этого события регистрировалось детекторами, позволяя контролировать параметры пучка антивещества. Странным было то, что акты аннигиляции разбивались на две явно различные группы, что в тот момент не нашло внятных объяснений.

Теперь ученые смоделировали пучок антипротонов на компьютере, и ситуация прояснилась. Оказывается, вторая группа аннигилировавших в газе протонов просто отражалась от мишени из-за многократного резерфордовского рассеивания антипротонов на ядрах алюминия. Дело в том, что ядро примерно в сто тысяч раз меньше самого атома, а аннигиляция случается, только если антипротон попадает точно в ядро. Если антипротон промахивается, он отклоняется от направления полета электрическим полем атома, то есть рассеивается. После нескольких десятков актов такого рассеивания, проникнув в слой алюминия примерно на 5–10 нм, антипротон совсем "забывает", откуда прилетел. При этом с большой вероятностью он может вылететь из мишени, то есть отразиться от нее, как от диффузного зеркала.

Возможность отражения антивещества от мишени вместо аннигиляции раньше никому не приходила в голову. Но специалисты считают, что выполненные расчеты и их согласие с результатами эксперимента надежно подтверждают теорию. И хотя пока не очень понятно, как можно использовать этот странный эффект, не исключено, что со временем дело ему отыщется. ГА

Эх, дороги

Журнал

Ученые из Вустерского политехнического института, что в штате Массачусетс, решили проверить: а нельзя ли использовать автомагистраль с асфальтовым покрытием в качестве коллектора солнечной энергии?

Каждый, кто в жаркий солнечный день пытался пройтись босиком по раскаленному асфальту, согласится, что эта блестящая идея буквально лежит под ногами. Темный асфальт хорошо поглощает солнечную энергию, а за счет толщины отлично аккумулирует тепло и остается горячим почти круглые сутки.

Уже построены тысячи километров дорог и парковок, а значит, не потребуется искать дополнительные свободные площади для размещения солнечных элементов. Дорожное покрытие, если за ним исправно следят, регулярно обновляется каждые десятьдвенадцать лет, и в планы ремонтников нетрудно включить модернизацию для получения энергии. А отвод тепловой энергии от полотна приведет к его охлаждению и продлит срок службы.

То есть куда ни глянь - сплошная польза. Но на пути к практическому воплощению задумки придется преодолеть немало трудностей. Стендовые эксперименты показали, что спектральные характеристики полотна не полностью отвечают условиям поставленной задачи, и потребуется разработать специальные краски, которые бы отражали меньше солнечных лучей и вдобавок были стойкими к истиранию. Также на пользу делу пойдет добавление в состав асфальта наполнителей с высокой теплопроводностью, которые помогут заметно повысить эффективность сбора энергии.

Нагретую под асфальтом воду можно использовать для отопления зданий или в различных технологических процессах.

Кроме того, энергию горячей воды можно с помощью термоэлектрических генераторов преобразовать в электричество.

Результаты первых опытов говорят о том, что идея использовать дороги в качестве источника энергии не столь уж утопична.


Перейти на страницу:
Изменить размер шрифта: