Блок обогрева размещался в небольшом герметичном отсеке, расположенном на кронштейнах вне корпуса «Лунохода». После доставки «Лунохода» на Луну и при наступлении лунной ночи через отсек с помощью двух патрубков осуществлялось прохождение охладившегося воздуха из корпуса «Лунохода» и возвращение обратно по второму патрубку нагретого воздуха (циркуляция воздуха осуществлялась вентилятором). Тепловая энергия от радиоизотопного источника обогревала весь «Луноход», и лунным днем блок обогрева с помощью заслонки, расположенной в патрубке, отсекался от атмосферы корпуса «Лунохода».

Чтобы предотвратить перетекание избыточного теплового потока через конструкцию, блок обогрева соединялся с корпусом «Лунохода» через тепловые изоляторы как по кронштейнам, так и по патрубкам. Однако от блока обогрева путем лучеиспускания распространялся поток тепла, и для защиты корпуса «Лунохода» от этого потока на блоке обогрева был установлен параболический зеркальный экран. Он отражал лучистую энергию, идущую в сторону «Лунохода», и рассеивал се в окружающее пространство.

В отдельных случаях при создании систем терморегулирования КА приходится учитывать условия, резко отличные от условий космического пространства. Например, при исследовании Венеры от межпланетной станции перед подлетом к планете отделяется спускаемый аппарат, предназначенный для изучения химического состава и физико-механических свойств атмосферы и поверхности планеты. Условия на поверхности Венеры отличаются не только от земных, но и резко отличаются от факторов космического пространства. Температура у поверхности Венеры достигает почти 500 °C, а давление атмосферы — около 90 кг/см2. Мощный натиск давлсния и большого потока тепла заставляет принимать меры для сохранения работоспособности КА в течение времени, достаточного для решения поставленных задач.

Перед подлетом к Венере спускаемый аппарат «захолаживается» с помощью системы терморегулирования КА «Венера». По команде с Земли принудительно холодным воздухом температура спускаемого аппарата за 10 сут до подлета плавно понижается до -10 °C (холодный воздух поступает из холодного контура станции). Такое понижение температуры нужно для увеличения срока жизнедеятельности аппаратуры, находящейся внутри спускаемого аппарата при прохождении им атмосферы и после посадки па поверхности Венеры. За 2 сут до подлета, когда понижение температуры спускаемого аппарата заканчивается, он отделяется и летит к планете.

При входе аппарата в атмосферу возникают большие перегрузки и сильный аэродинамический нагрев, атмосфера вблизи спускаемого аппарата нагревается до нескольких тысяч кельвинов. Сохранение спускаемого аппарата от этого обеспечивается помещением его в шаровую конструкцию, наружная поверхность которой защищена термостойким покрытием на основе керамического или органического материала с наполнителем. Покрытие при торможении аппарата в атмосфере нагревается до температуры плавления и частично сублимирует, т. е. испаряется. Тогда как конструкция корпуса спускаемого аппарата не нагревается, так как между слоем термостойкого покрытия и конструкцией расположен слой термоизоляционного материала. При уменьшении скорости спуска шаровая конструкция пиросрсдствами делится пополам и отбрасывается, а спускаемый аппарат на парашюте и тормозном щитке опускается на поверхность.

Спускаемый аппарат снаружи одет в теплозащитную оболочку толщиной 100–150 мм из искусственного материала, обладающего хорошими теплоизоляционными характеристиками. Под оболочкой находится прочный и герметичный, выдерживающий давление 120 атм металлический корпус, в котором размещена вся научная и служебная аппаратура. Для устройств, проникающих в области с высокой температурой, для относительно длительного сохранения приемлемой температуры, при которой еще функционируют приборы, внутри создают полости, заполненные материалом, имеющим большую удельную теплоемкость.

Применяются также материалы со сравнительно низкой температурой фазовых преобразований, т. е. температурой перехода из одного агрегатного состояния в другое, что дает возможность стабилизировать на время температуру без ее повышения. В спускаемом аппарате межпланетной станции «Венера» используется металлический наполнитель для поглощения тепла (бериллий).

Для поддержания нормальных условий в месте установки радиокомплекса расположена емкость, заполненная азотнокислым литием. Температура фазовых превращений этого соединения около 30 °C, что дает возможность относительно длительное время стабилизировать температуру и значительно продлить срок активного существования автоматического КА па поверхности Венеры.

Система терморегулирования на всех этапах космического полета, т. е. при изменении солнечного излучения (что бывает при перелетах от планеты к планете), при выделении тепла от работы аппаратуры на борту КА и при работе на поверхности планеты в сложных температурных условиях, обязана поддерживать тепловой режим КА в узких пределах, необходимых для сохранения работоспособности всех систем.

Следует сказать, что для нормальной работы системы терморегулирования необходимо, чтобы радиатор-нагреватель всегда был обращен на Солнце, а радиатор-холодильник на теневую сторону. В то же время панели солнечных батарей должны освещаться Солнцем, а научная аппаратура направлена на интересующий ученых объект (Луну, планету или звезду). С такой задачей справляется система ориентации.

Система ориентации. Космический робот — автоматический КА выполняет задачи по требованию человека и должен на выполнение научной работы смотреть, как сам человек. А что бы стал делать человек-исследователь, оказавшись в космическом пространстве? Первое — это рассмотреть окрестности, правильно выбрать интересующий объект, повернуться в его сторону. Второе — это начать его изучать (визуально или фотографируя), замеряя с помощью приборов интересующие его данные. КА тоже прежде всего должен уметь найти объект, а затем повернуться к нему объективом фотоаппарата или датчиком других научных приборов.

На Земле мы поворачиваемся, используя силу трения между ногами и земной поверхностью. Даже на скользком льду, осторожно двигаясь, проскальзывая, но все же разворачиваемся в нужном направлении. В космосе даже сверхскользкой опоры нет — для совершения поворота опереться не на что. Следовательно, приходится обходиться внутренними силами: использовать реактивные силы, возникающие при работе реактивных двигателей. Движение в космосе совершается за счет реактивных сил двигательной установки, и развороты вокруг оси производятся на основе того же принципа.

Применение реактивной силы в космосе для осуществления поворота образно можно сравнить со следующим примером. На озере или в пруду стоит лодка, приставшая бортом к пристани. Если с кормы лодки на пристань прыгнет человек, то от толчка его ноги корма отойдет и лодка будет разворачиваться. В космосе прыгает не человек, а выбрасываются через сопло продукты сгорания топлива или заранее запасенный газ. В противоположную сторону будет отходить та часть автоматического КА, где расположен микродвигатель.

В итоге КА начнет разворачиваться вокруг центра масс. Микродвигатели располагают таким образом, чтобы вращение аппарата можно было осуществить по трем взаимно перпендикулярным осям. С целью создания большего момента малой силой тяги микродвигатели располагают на выносных штангах или на концах панелей солнечных батарей.

Система ориентации автоматического КА в продолжение всего полета решает ряд задач. Если предоставить КА самому себе, то он с самого начала полета не будет оставаться в покое, а начнет беспорядочно кувыркаться. Это происходит вследствие того, что во время отделения от ракеты-носителя КА отталкивается от нескольких точек крепления. Малейшая разница в силах дает момент на закрутку: даже разница в силах трения в шариковых замках при расцепке ведет к развороту и вращению космического аппарата. Малые силы не могут сильно раскрутить тяжелый аппарат, но даже плавное, медленное вращение со скоростью несколько угловых градусов в минуту не позволит нормально функционировать целому ряду систем.


Перейти на страницу:
Изменить размер шрифта: