Рис. 5. Зависимость относительного объёма твёрдых тел от давления.

Большая Советская Энциклопедия (ДА) i009-001-215904132.jpg

Рис. 1. Границы областей существования некоторых минералов. Над чертой даны названия фаз высокого давления, под чертой — фаз низкого давления. М — поверхность Мохоровичича под континентами.

Большая Советская Энциклопедия (ДА) i009-001-221587044.jpg

Рис. 8. Зависимость вязкости жидкостей от давления при комнатной температуре.

Большая Советская Энциклопедия (ДА) i009-001-222108637.jpg

Рис. 13. Зависимость температуры плавления металлов от давления.

Большая Советская Энциклопедия (ДА) i009-001-230835125.jpg

Рис. 9. Фотографии образцов стали, разорванных при осевом растяжении в условиях различных гидростатических давлений в жидкости, окружающей образец (а — атмосферное давление; б — 8,5 кбар; в — 16,5 кбар). Уменьшающаяся от а к в площадь поверхности разрыва указывает на увеличение пластичности стали с ростом давления.

Большая Советская Энциклопедия (ДА) i009-001-242705149.jpg

Рис. 6. Изменение плотности некоторых металлов при ударном сжатии.

Большая Советская Энциклопедия (ДА) i010-001-245953756.jpg

Рис. 16. Схемы аппаратов высокого давления: а — аппарат «цилиндр — поршень»; б — «наковальни» Бриджмена; в — установка с коническими пуансонами; г — «наковальни», погруженные в пластичную среду, сжатую до меньшего давления; д и е — «тетраэдрическая» и «кубическая» установки (пуансон, обращенный к зрителю, не изображен); отдельно показана форма сжимаемого тела; 1 — пуансон (поршень); 2 — сосуд высокого давления; 3 — сжимаемый образец; 4 — среда, передающая давление. Стрелками показаны направления действия сил.

Большая Советская Энциклопедия (ДА) i010-001-249104006.jpg

Рис. 4. Зависимость относительного объёма жидкости от давления.

Большая Советская Энциклопедия (ДА) i010-001-258806679.jpg

Рис. 2. Экспериментально освоенный диапазон давлений и температур: I — прессование в промышленности; II — гидро—термальные процессы; III — гидростатические давления (в газах и жидкостях); IV — диапазон давлений, освоенный к 1950—м гг. (Бриджмен); V — статические давления (до 200 кбар) при высоких температурах (к 1970—м годам); VI — статические давления (до 300 кбар) при сверхнизких температурах; VII — давления, создаваемые ударными волнами (до ~ 104 кбар при температурах свыше 3000° С); VIII — cтатические давления (до ~ 500 кбар) при комнатной температуре.

Большая Советская Энциклопедия (ДА) i010-001-269604674.jpg

Рис. 12. Фазовая диаграмма железа. Показаны области существования кристаллических модификаций железа (a,d,g и e) и строение соответствующих элементарных ячеек.

Большая Советская Энциклопедия (ДА) i010-001-277016019.jpg

Рис. 10. Изменение объёма (плотности) некоторых простых веществ при полиморфных переходах. Величина вертикальной ступеньки на каждой кривой соответствует изменению объёма при переходе.

Большая Советская Энциклопедия (ДА) i010-001-286036578.jpg

Рис. 7. Зависимость атомных объёмов V элементов (в см3/г—атом) от порядкового номера Z: а — при нормальных условиях; б — при давлении 1 Мбар; в — вычисленные данные для 10 Мбар.

Большая Советская Энциклопедия (ДА) i010-001-286215911.jpg

Рис. 15. Изменение температуры Кюри под давлением у различных магнитных материалов: 1 — (MnZn)Fe2O4, 2 — La, 75 Sr, 25MnO3, 3 — Ni, 4 — сплав Ni—Cu (67%Ni), 5 — алюмель (94%Ni), 6 — Cd, 7 — сплав Fe — Ni(64%Fe), 8 — сплав Fe — Ni(70%Fe).

Большая Советская Энциклопедия (ДА) i010-001-287006585.jpg

Рис. 11. Изменение относительного электрического сопротивления металлов, испытывающих полиморфные переходы при высоких давлениях. Шкала 0—2,0 — для Bi, Pb; шкала 0—5 — для Ba, Fe; шкала 0—100 — для Rb, Ca, Cs.

Давление горное

Давле'ние го'рное, см. Горное давление.

Давление звука

Давле'ние зву'ка, давление звукового излучения, радиационное давление, постоянное давление, испытываемое телом, находящимся в стационарном звуковом поле. Д. з. не следует смешивать со звуковым давлением, представляющим собой периодически меняющееся давление в среде, в которой распространяется звуковая волна. Д. з. пропорционально плотности звуковой энергии и, следовательно, квадрату звукового давления. Оно мало по сравнению со звуковым давлением; так, например, в звуковом поле в воздухе, в котором звуковое давление равно 102 н/м2, при нормальном падении звуковой волны на полностью отражающее звук препятствие Д. з. приблизительно равно 0,1 н/м2. Измерение Д. з. производится радиометром. Зная величину Д. з., можно определить абсолютное значение интенсивности звука в данной среде.

  Лит.: Красильников В. А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М., 1960; Морз Ф., Колебания и звук, пер. с англ., М. — Л., 1949.

Давление света

Давле'ние све'та, давление, производимое светом на отражающие или поглощающие тела. Д. с. впервые было экспериментально открыто и измерено П. Н. Лебедевым (1899). Величина Д. с. даже для самых сильных источников света (Солнце, электрическая дуга) ничтожно мала и маскируется в земных условиях побочными явлениями (конвекционными токами, радиометрическими силами, см. Радиометрический эффект), которые могут превышать в тысячи раз величину Д. с. Для обнаружения Д. с. Лебедев изготовил специальные приборы и проделал опыты, представляющие замечательный пример искусства эксперимента. Основной частью прибора Лебедева служили плоские лёгкие крылышки (диаметром 5 мм) из различных металлов (платина, алюминий, никель) и слюды (рис. 1). Крылышки подвешивались на тонкой стеклянной нити и помещались внутри стеклянного сосуда G (рис. 2), из которого выкачивался воздух. На крылышки с помощью специальной оптической системы и зеркал направлялся свет от сильной электрической дуги В. Перемещение зеркал S1, S4 давало возможность изменять направление падения света на крылышки. Устройство прибора и методика измерения позволили свести до минимума мешающие радиометрические силы и обнаружить Д. с. на отражающие или поглощающие крылышки, которые под его воздействием отклонялись и закручивали нить. В 1907—10 Лебедев исследовал Д. с. на газы, что было ещё труднее, так как Д. с. на газы в сотни раз меньше, чем на твёрдые тела.

  Результаты экспериментов Лебедева и более поздних исследователей полностью согласуются со значением Д. с., определённым на основе электромагнитной теории света (Дж. К. Максвелл, 1873), что явилось ещё одним важным подтверждением теории электромагнитного поля Фарадея — Максвелла. Согласно электромагнитной теории света, давление, которое оказывает на поверхность тела плоская электромагнитная волна, падающая перпендикулярно к поверхности, равно плотности и электромагнитной энергии (энергии, заключённой в единице объёма) около поверхности. Эта энергия складывается из энергии падающих и энергии отражённых от тела волн. Если мощность электромагнитной волны, падающей на 1 см2 поверхности тела, равна S эрг/см2( сек), коэффициент отражения электромагнигной энергии от поверхности тела равен R, то вблизи поверхности плотность энергии u = S• (1+R)/c (с — скорость света). Этой величине и равно Д. с. на поверхность тела: р = S (1 + R)/c (эрг/см3 или дж/м3). Например, мощность солнечного излучения, приходящего на Землю, равна 1,4•106 эрг/(см2(сек) или 1,4•103 вт/м2, следовательно, для абсолютной поглощающей поверхности (когда R = 0) р = 4,3 •10-5lдин/см2 = 4,3•10-6 н/м2. Общее давление солнечного излучения на Землю равно 6•1013 дин (6•108 н), что в 1013 раз меньше силы притяжения Солнца.


Перейти на страницу:
Изменить размер шрифта: