Физические свойства. К. — бесцветный газ, сгущающийся при —182,9 °С и нормальном давлении в бледно-синюю жидкость, которая при —218,7 °С затвердевает, образуя синие кристаллы. Плотность газообразного К. (при 0°С и нормальном давлении) 1,42897 г/л. Критическая температура К. довольно низка tkpит = —118,84 °С), т. е. ниже, чем у Cl2, CO2, SO2 и некоторых других газов; Ркрит = 4,97 Мн/м2 (49,71 am). Теплопроводность (при 0 °С) 23,86Ч10-3 вт/(м·К), т. е. 57Ч10-6 кал/сек·см·°С). Молярная теплоёмкость (при 0 °С) в дж/(моль·К) Ср = 28,9, Cv = 20,5; в кал/(моль· oC) Ср = 6,99, Cv = 4,98; Cp/Cv = 1,403. Диэлектрическая проницаемость газообразного К. 1,000547 (0 °С), жидкого 1,491. Вязкость 189 мпуаз (0 °С). К. мало растворим в воде: при 20 °С и 1 am в 1 м3 воды растворяется 0,031 м3, а при 0 °С — 0,049 м3 К. Хорошими твёрдыми поглотителями К. являются платиновая чернь и активный древесный уголь.
Химические свойства. К. образует химические соединения со всеми элементами, кроме лёгких инертных газов. Будучи наиболее активным (после фтора) неметаллом, К. взаимодействует с большинством элементов непосредственно; исключение составляют тяжелые инертные газы, галогены, золото и платина; их соединения с К. получают косвенным путем. Почти все реакции К. с другими веществами — реакции окисления экзотермичны, т. е. сопровождаются выделением энергии. С водородом при обычных температурах К. реагирует крайне медленно, выше 550 °С эта реакция идёт со взрывом: 2Н2 + O2 = 2H2O. С серой, углеродом, азотом, фосфором К. взаимодействует при обычных условиях очень медленно. При повышении температуры скорость реакции возрастает и при некоторой, характерной для каждого элемента температуре воспламенения начинается горение. Реакция азота с К. благодаря особой прочности молекулы N2 эндотермична и становится заметной лишь выше 1200 °С или в электрическом разряде: N2+O2 = 2NO. К. активно окисляет почти все металлы, особенно легко — щелочные и щёлочноземельные. Активность взаимодействия металла с К. зависит от многих факторов — состояния поверхности металла, степени измельчения, присутствия примесей (см. Алюминий, Железо, Хром и т.д.).
В процессе взаимодействия вещества с К. исключительно важна роль воды. Например, даже такой активный металл, как калий, с совершенно лишённым влаги К. не реагирует, но воспламеняется в К. при обычной температуре в присутствии даже ничтожных количеств паров воды. Подсчитано, что в результате коррозии ежегодно теряется до 10% всего производимого металла.
Окиси некоторых металлов, присоединяя К., образуют перекисные соединения, содержащие 2 или более связанных между собой атомов К. Так, перекиси Na2O2 и ВаО2 включают перекисный ион O22-, надперекиси NaO2 и KO2 — ион O2-, а озониды NaO3, KO3, RbO3 и CsO3 — ион O3-. К. экзотермически взаимодействует со многими сложными веществами. Так, аммиак горит в К. в отсутствии катализаторов, реакция идёт по уравнению: 4NH3 + 3O2 = 2N2 + 6Н2О. Окисление аммиака кислородом в присутствии катализатора даёт NO (этот процесс используют при получении азотной кислоты). Особое значение имеет горение углеводородов (природного газа, бензина, керосина) — важнейший источник тепла в быту и промышленности, например СН4+2О2 = СО2+2Н2О. Взаимодействие углеводородов с К. лежит в основе многих важнейших производственных процессов — такова, например, так называемая конверсия метана, проводимая для получения водорода: 2СН4+О2+2Н2О=2СО2+6Н2 (см. Конверсия газов). Многие органические соединения (углеводороды с двойной или тройной связью, альдегиды, фенолы, а также скипидар, высыхающие масла и др.) энергично присоединяют К. Окисление К. питательных веществ в клетках служит источником энергии живых организмов.
Получение. Существует 3 основных способа получения К.: химический, электролизный (электролиз воды) и физический (разделение воздуха).
Химический способ изобретён ранее других. К. можно получать, например, из бертолетовой соли KClO3, которая при нагревании разлагается, выделяя O2 в количестве 0,27 м3 на 1 кг соли. Окись бария BaO при нагревании до 540 °С сначала поглощает К. из воздуха, образуя перекись BaO2, а при последующем нагревании до 870 °С BaO2 разлагается, выделяя чистый К. Его можно получать также из KMnO4, Ca2PbO4, K2Cr2O7 и других веществ при нагревании и добавлении катализаторов. Химический способ получения К. малопроизводителен и дорог, промышленного значения не имеет и используется лишь в лабораторной практике.
Электролизный способ состоит в пропускании постоянного электрического тока через воду, в которую для повышения её электропроводности добавлен раствор едкого натра NaOH. При этом вода разлагается на К. и водород. К. собирается около положительного электрода электролизёра, а водород — около отрицательного. Этим способом К. добывают как побочный продукт при производстве водорода. Для получения 2 м3 водорода и 1 м3 К. затрачивается 12—15 квт·ч электроэнергии.
Разделение воздуха является основным методом получения К. в современной технике. Осуществить разделение воздуха в нормальном газообразном состоянии очень трудно, поэтому воздух прежде сжижают, а затем уже разделяют на составные части. Такой способ получения К. называют разделением воздуха методом глубокого охлаждения. Сначала воздух сжимается компрессором, затем, после прохождения теплообменников, расширяется в машине-детандере или дроссельном вентиле, в результате чего охлаждается до температуры 93 К (—180 °С) и превращается в жидкий воздух. Дальнейшее разделение жидкого воздуха, состоящего в основном из жидкого азота и жидкого К., основано на различии температуры кипения его компонентов [tkип O2 90,18 К (—182,9 °С), tkип N2 77,36 К (—195,8 °С)]. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость всё более обогащается К. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн (см. Ректификация), получают жидкий К. нужной чистоты (концентрации). В СССР выпускают мелкие (на несколько л) и самые крупные в мире кислородные воздухоразделительные установки (на 35000 м3/ч К.). Эти установки производят технологический К. с концентрацией 95—98,5%, технический — с концентрацией 99,2—99,9% и более чистый, медицинский К., выдавая продукцию в жидком и газообразном виде. Расход электрической энергии составляет от 0,41 до 1,6 квт·ч/м3.