Ошен

О'шен, Океан (Ocean), остров в западной части Тихого океана (0° 52' южной широты и 169° 32' восточной долготы). Площадь 6,5 км2. Население 2100 человек (1969). Входит в состав британской колонии Острова Гилберта и Эллис. Представляет собой атолл, возвышающийся над водной поверхностью на 80 м и окаймленный коралловыми рифами. Крупное месторождение фосфоритов (добыча 509 тыс. т в 1970). Открыт в 1804 английскими моряками, назвавшими его по имени своего корабля.

Ошибка округления

Оши'бка округле'ния (математика), абсолютное значение разности данного числа а и числа а*, получающегося в результате округления а.

Ошибни

О'шибни (Ophidion), род морских рыб отряда окунеобразных. Несколько видов, в прибрежных водах Средиземного моря и прилежащих областей Атлантики. В СССР 1 вид — обыкновенный О. (О. rochei), обитает в Чёрном море. Длина до 25 см. Держится у дна. Днём зарывается в песчаный грунт, приняв вертикальное положение и закапываясь задним концом тела за счёт колебательных движений длинных непарных плавников. Активен ночью. Питается донными беспозвоночными и рыбами. Размножается в июне — сентябре. Икра пелагическая.

  Лит.: Световидов А. Н., Рыбы Чёрного моря, М.— Л., 1964; Жизнь животных, т. 4, ч. 1, М., 1971.

Большая Советская Энциклопедия (ОШ) i010-001-262208949.jpg

Обыкновенный ошибень.

Ошибок теория

Оши'бок тео'рия, раздел математической статистики, посвященный построению уточнённых выводов о численных значениях приближённо измеренных величин, а также об ошибках (погрешностях) измерений. Повторные измерения одной и той же постоянной величины дают, как правило, различные результаты, так как каждое измерение содержит некоторую ошибку. Различают 3 основных вида ошибок: систематические, грубые и случайные. Систематические ошибки всё время либо преувеличивают, либо преуменьшают результаты измерений и происходят от определённых причин (неправильной установки измерительных приборов, влияния окружающей среды и т. д.), систематически влияющих на измерения и изменяющих их в одном направлении. Оценка систематических ошибок производится с помощью методов, выходящих за пределы математической статистики (см. Наблюдений обработка). Грубые ошибки возникают в результате просчёта, неправильного чтения показаний измерительного прибора и т. п. Результаты измерений, содержащие грубые ошибки, сильно отличаются от других результатов измерений и поэтому часто бывают хорошо заметны. Случайные ошибки происходят от различных случайных причин, действующих при каждом из отдельных измерений непредвиденным образом то в сторону уменьшения, то в сторону увеличения результатов.

  О. т. занимается изучением лишь грубых и случайных ошибок. Основные задачи О. т.: разыскание законов распределения случайных ошибок, разыскание оценок (см. Статистические оценки) неизвестных измеряемых величин по результатам измерений, установление погрешностей таких оценок и устранение грубых ошибок.

  Пусть в результате n независимых равноточных измерений некоторой неизвестной величины а получены значения x1, x2,..., xn. Разности

d1 = x1 — a,…, dn = xn — a

  называются истинными ошибками. В терминах вероятностной О. т. все di трактуются как случайные величины; независимость измерений понимается как взаимная независимость случайных величин d1,..., dn. Равноточность измерений в широком смысле истолковывается как одинаковая распределённость: истинные ошибки равноточных измерений суть одинаково распределённые случайные величины. При этом математическое ожидание случайных ошибок b = Ed1 =...= Еdn называется систематической ошибкой, а разности d1 b,..., dn b — случайными ошибками. Таким образом, отсутствие систематической ошибки означает, что b = 0, и в этой ситуации d1,..., dn суть случайные ошибки. Величину

Большая Советская Энциклопедия (ОШ) i-images-163262978.png
, где а — квадратичное отклонение, называют мерой точности (при наличии систематической ошибки мера точности выражается отношением 
Большая Советская Энциклопедия (ОШ) i-images-138968173.png
. Равноточность измерений в узком смысле понимается как одинаковость меры точности всех результатов измерений. Наличие грубых ошибок означает нарушение равноточности (как в широком, так и в узком смысле) для некоторых отдельных измерений. В качестве оценки неизвестной величины а обычно берут арифметическое среднее из результатов измерений

Большая Советская Энциклопедия (ОШ) i-images-125785299.png
,

  а разности D1 = x1

Большая Советская Энциклопедия (ОШ) i-images-146678455.png
,..., Dn = xn
Большая Советская Энциклопедия (ОШ) i-images-190233621.png
  
называются кажущимися ошибками. Выбор
Большая Советская Энциклопедия (ОШ) i-images-110504744.png
 
в качестве оценки для а основан на том, что при достаточно большом числе n равноточных измерений, лишённых систематической ошибки, оценка
Большая Советская Энциклопедия (ОШ) i-images-147929492.png
 с вероятностью, сколь угодно близкой к единице, сколь угодно мало отличается от неизвестной величины а (см. Больших чисел закон); оценка
Большая Советская Энциклопедия (ОШ) i-images-198723072.png
 лишена систематической ошибки (оценки с таким свойством называются несмещенными); дисперсия оценки есть

  D

Большая Советская Энциклопедия (ОШ) i-images-195552038.png
= E (
Большая Советская Энциклопедия (ОШ) i-images-134148771.png
— а
)2 = s2/n.

  Опыт показывает, что практически очень часто случайные ошибки di подчиняются распределениям, близким к нормальному (причины этого вскрыты так называемыми предельными теоремами теории вероятностей). В этом случае величина

Большая Советская Энциклопедия (ОШ) i-images-160881997.png
 имеет мало отличающееся от нормального распределение, с математическим ожиданием а и дисперсией s2/n. Если распределения di в точности нормальны, то дисперсия всякой другой несмещенной оценки для а, например медианы, не меньше D
Большая Советская Энциклопедия (ОШ) i-images-142720666.png
.
Если же распределение di отлично от нормального, то последнее свойство может не иметь места.

  Если дисперсия s2 отдельных измерений заранее известна, то для её оценки пользуются величиной

Большая Советская Энциклопедия (ОШ) i-images-160480061.png

  (Es2 = s2, т. е. s2 несмещенная оценка для s2), если случайные ошибки di имеют нормальное распределение, то отношение

Большая Советская Энциклопедия (ОШ) i-images-178313222.png


Перейти на страницу:
Изменить размер шрифта: