Если существует
(теорема Планшереля). Формула (8) является обобщением на Ф. п. формулы Парсеваля (см. Парсеваля равенство) для рядов Фурье (см. Фурье ряд). Физический смысл формулы (8) заключается в равенстве энергии некоторого колебания сумме энергий его гармонических компонент. Отображение F: f (x) ® g (u) является унитарным оператором в гильбертовом пространстве функций f (x), — ¥ < x < ¥, с интегрируемым квадратом. Этот оператор может быть представлен также в виде
При некоторых условиях на f (x) справедлива формула Пуассона
находящая применение в теории тэта-функций.
Если функция f (x) достаточно быстро убывает, то её Ф. п. можно определить и при некоторых комплексных значениях u = v + iw. Например, если существует
Оператор Ф. п. может быть расширен на более обширные классы функций, нежели совокупность суммируемых функций [например, для функций f (x) таких, что (1 + |x|)–1f (x) суммируема, Ф. п. определяется формулой (9)], и даже на некоторые классы обобщённых функций (т. н. медленного роста).
Имеются обобщения Ф. п. Одно из них использует различного рода специальные функции, например Бесселя функции, это направление получает завершение в теории представлений непрерывных групп. Другим является т. н. преобразование Фурье — Стилтьеса, широко применяемое, например, в теории вероятностей; оно определяется для произвольной ограниченной неубывающей функции j(x) Стилтьеса интегралом
и называется характеристической функцией распределения j. Для представимости функции g (u) в виде (10) необходимо и достаточно, чтобы при любых u1,..., un, x1,...,xn было
(теорема Бохнера — Хинчина).
Ф. п., первоначально возникшее в теории теплопроводности, имеет многочисленные применения как в самой математике (например, при решении дифференциальных, разностных и интегральных уравнений, в теории специальных функций и т.д.), так и в различных разделах теоретической физики. Например, Ф. п. стало стандартным аппаратом квантовой теории поля, широко используется в методе функций Грина для неравновесных задач квантовой механики и термодинамики, в теории рассеяния и т.д.
Лит.: Снеддон И., Преобразование Фурье, пер. с англ., М., 1955; Владимиров В. С., Обобщенные функции в математической физике, М., 1976.
Фурье ряд
Фурье' ряд, тригонометрический ряд, служащий для разложения периодической функции на гармонические компоненты. Если функция f (x) имеет период 2T, то её Ф. р. имеет вид
где a, an, bn (n ³ 1) — Фурье коэффициенты. В зависимости от того, в каком смысле понимаются интегралы в формулах для коэффициентов, говорят о рядах Фурье — Римана, Фурье — Лебега и т.д. Обычно рассматривают 2p-периодические функции (общий случай сводится к ним преобразованием независимого переменного).
Ф. р. представляют собой простейший класс разложений по ортогональной системе функций, а именно — по тригонометрической системе 1, cos x, sin x, cos 2x, sin 2x,..., cos nx, sin nx,..., которая обладает двумя важными свойствами: замкнутостью и полнотой. Частичные суммы Ф. р. (суммы Фурье)
обращают в минимум интеграл
где tn (x) — произвольный тригонометрический полином порядка £ n, а функция f (x) интегрируема с квадратом. При этом
так что функции f (x), имеющие интегрируемый квадрат, сколь угодно хорошо аппроксимируются своими суммами Фурье в смысле среднего квадратичного уклонения (см. Приближение и интерполирование функций).
Для любой интегрируемой функции f (x) коэффициенты Фурье an, bn при n ® ¥ стремятся к нулю (Б. Риман, А. Лебег). Если же функция f (x) несобственно интегрируема по Риману, то коэффициенты Фурье могут и не стремиться к нулю (Риман). В случае, если квадрат функции f (x) интегрируем, то ряд
Один из вариантов этой формулы был впервые указан французским математиком М. Парсевалем (1799), а общая формула (где интеграл понимается в смысле Лебега) доказана Лебегом. Обратно, для любой последовательности действительных чисел an, bn со сходящимся рядом
Известно большое число признаков сходимости Ф. р., т. е. достаточных условий, гарантирующих сходимость ряда. Например, если функция f (x) имеет на периоде конечное число максимумов и минимумов, то её Ф. р. сходится в каждой точке (П. Дирихле). Более общо, если f (x) имеет ограниченное изменение (см. Изменение функции), то её Ф. р. сходится в каждой точке и притом равномерно на каждом отрезке, внутреннем к отрезку, на котором f (x) непрерывна (К. Жордан). Если f (x) непрерывна и её модуль непрерывности w(d, f) удовлетворяет условию