В России идеи Ф. уже в 1-й четверти 19 в. стали известны некоторым из декабристов и близким к ним представителям интеллигенции. В 30—40-х гг. учением Ф. интересовались А. И. Герцен, Н. П. Огарев. Выдающимися приверженцами Ф. были М. В. Петрашевский и петрашевцы. Идеи Ф. отразились в произведениях Ф. М. Достоевского, М. Е. Салтыкова-Щедрина, Н. Г. Чернышевского и др. (см. также ст. Утопический социализм).
Соч.: CEuvres complètes, v. 1—6, P., 1841—1870; CEuvres complètes, v. 1—11, P., 1966—67; в рус. пер. — Избр. соч., т. 1—4, М. — Л., 1951—54.
Лит.: Бебель А., Ш. Фурье, пер. с нем., М., 1923; Дворцов А. Т., Шарль Фурье. Его жизнь и учение, М., 1938; Иоаннисян А. Р., Шарль Фурье, М., 1958; Зильберфарб И. И., Социальная философия Шарля Фурье и её место в истории социалистической мысли первой половины XIX в., М., 1964 (лит.); Armand F., Fourier, v. 1—2, P., 1937.
И. И. Зильберфарб.

Ш. Фурье.
Фурье число
Фурье' число', один из подобия критериев нестационарных тепловых процессов. Характеризует соотношение между скоростью изменения тепловых условий в окружающей среде и скоростью перестройки поля температуры внутри рассматриваемой системы (тела), который зависит от размеров тела и коэффициент его температуропроводности. Ф. ч. обозначают F и определяют формулой Fo = at/l2, где а = l/rc — коэффициент температуропроводности, l — коэффициент теплопроводности, r — плотность, с — удельная теплоёмкость, l — характерный линейный размер тела, t — характерное время изменения внешних условий. Поскольку критерии, устанавливающие связь между скоростями развития различных эффектов, называются критериями гомохронности, Ф. ч. является критерием гомохронности тепловых процессов. Для тепловых процессов, описываемых теплопроводности уравнением, безразмерное распределение температуры в теле представляется в виде функции от безразмерных геометрических и тепловых критериев подобия, одним из которых является Ф. ч. Название по имени Ж. Фурье.
С. Л. Вишневецкий.
Фурье-спектроскопия
Фурье'-спектроскопи'я, фурье-спектрометрия, метод спектроскопии оптической, в котором получение спектров происходит в 2 приёма: сначала регистрируется т. н. интерферограмма исследуемого излучения, а затем путём её Фурье преобразования вычисляется спектр.
В Ф.-с. интерферограммы получают с помощью интерферометра Майкельсона, который настраивается на получение в плоскости выходной диафрагмы (см. рис. 1 в ст. Интерферометр) интерференционных колец равного наклона (см. Полосы равного наклона). При поступательном перемещении одного из зеркал интерферометра изменяется разность хода D лучей в плечах интерферометра. В процессе изменения D исследуемое излучение модулируется, причём частота модуляции f зависит от скорости v изменения D и длины волны излучения l (волнового числа n = 1/l). При D = kl(k = 0, 1, 2,...) имеют место максимумы интенсивности излучения, при D = kl/2 — её минимумы. Если v = const, то f = v/l = vn, т. е. каждая длина волны исследуемого излучения кодируется определённой f.
Сигнал на приёмнике (интерферограмма) представляет собой совокупность синусоидальных цугов (см. рис.). Каждому спектру соответствует своя интерферограмма. В некоторых случаях спектр может быть определён по ней непосредственно, однако в большинстве случаев для преобразования интерферограммы в спектр необходимо произвести её гармонический анализ. Для этого она записывается в виде ряда (массива) цифр, соответствующих дискретным значениям интенсивности излучения при изменении разности хода от 0 до Dмакс (или от —Dмакс до +Dмакс) через равные интервалы. Такой массив, имеющий в разных приборах от 102 до 106 значений, вводится в память ЭВМ, которая путём преобразования Фурье вычисляет спектр в течение времени от нескольких сек до нескольких ч в зависимости от сложности спектра и числа значений в массиве.
Комплекс аппаратуры, выполняющий эти операции, называется фурье-спектрометром (ФС); в него, как правило, кроме двухлучевого интерферометра, входят осветитель, приёмник излучения, система отсчёта D, усилитель, аналогово-цифровой преобразователь и ЭВМ (встроенная в прибор или установленная в вычислительном центре). Сложность получения спектров на ФС перекрывается его преимуществами над др. спектральными приборами. Так, с помощью ФС можно регистрировать одновременно весь спектр. Благодаря тому, что в интерферометре допустимо входное отверстие больших размеров, чем щель спектральных приборов с диспергирующим элементом такого же разрешения, ФС по сравнению с ними имеют выигрыш в светосиле. Это позволяет уменьшить время регистрации спектров, уменьшить отношение сигнал — шум и повысить разрешение, уменьшить габариты прибора. Наличие ЭВМ в приборе позволяет, кроме вычисления спектра, производить др. операции по обработке полученного экспериментального материала, осуществлять управление и контроль за работой самого прибора.
Наибольшее применение Ф.-с. нашла в тех исследованиях, где др. методы малоэффективны или вовсе неприменимы (в основном, в ИК-области спектра). Например, спектры в ближней ИК-области некоторых планет были зарегистрированы в течение нескольких ч, а для регистрации их спектральным прибором с диспергирующим элементом потребовалось бы несколько месяцев. Малогабаритные ФС были использованы при исследовании из космоса околоземного пространства и земной поверхности в средней ИК-области. Лабораторные ФС для дальней ИК-области нашли применение в химии. Построены также фурье-спектрофотометры (см. Спектрофотометр) для всей ИК-области спектра.
Лит.: Белл Р. Дж., Введение в фурье-спектроскопию, пер. с англ., М., 1975; Инфракрасная спектроскопия высокого разрешения. Сб., пер. с франц. и англ., М., 1972; Мерц Л., Интегральные преобразования в оптике, пер. с англ., М., 1969.
Б. А. Киселев.

Интерферограммы, соответствующие: a — спектральной линии, б — спектральному дублету, в — спектральной полосе.