Если внутрь каверны, через тело, около которого возникает К., подвести атмосферный воздух или иной газ, то размеры каверны увеличиваются. При этом установится течение, которое будет соответствовать числу кавитации, образованному уже не по насыщающему давлению водяного пара рн, а по давлению газа внутри каверны pk, т. е.

Большая Советская Энциклопедия (КА) i-images-117292173.png
. Всплывание такой кавитационной каверны будет определяться т. н. числом Фруда
Большая Советская Энциклопедия (КА) i-images-144068619.png
, где g — ускорение силы тяжести, a d — некоторый характерный линейный размер. Так как pk может быть много больше рн, то в таких условиях возможно при малых скоростях набегающего потока получать течения, соответствующие очень низким значениям c, т. е. глубоким степеням развития К. Так, при движении тела в воде со скоростью 6—10 м/сек можно получить его обтекание, соответствующее скоростям до 100 м/сек. Кавитационные течения, получающиеся в результате подвода газа внутрь каверны, называют искусственной К.

  Гидродинамическая К. может сопровождаться рядом физико-химических эффектов, например искрообразованием и люминесценцией. В ряде работ обнаружено влияние электрического тока и магнитного поля на К., возникающую при обтекании цилиндра в гидродинамической трубе.

  Исследование К. и борьба с ней имеют большое значение, так как К. оказывает вредное влияние на работу гидротурбин, жидкостных насосов, гребных винтов кораблей, подводных звукоизлучателей, жидкостных систем высотных самолётов и т.д., снижает коэффициент полезного действия и приводит к разрушениям. К. может быть уменьшена при увеличении гидростатического давления, например помещением устройства на достаточной глубине по отношению к свободной поверхности жидкости, а также подбором соответствующих форм элементов конструкции, при которых вредное влияние К. уменьшается. Для уменьшения эрозии лопасти рабочих колёс изготавливают из нержавеющих сталей и шлифуют.

  Экспериментальные исследования К. производятся в так называемых кавитационных трубах, представляющих собой обычные гидродинамические трубы, оборудованные системой регулирования статического давления.

  Лит.: Корнфельд М., Упругость и прочность жидкостей, М. — Л., 1951; Биркгоф Г., Сарантонелло Э., Струи, следы и каверны, пер. с англ., М., 1964: Перник А. Д., Проблемы кавитации, 2 изд., Л., 1966; Ошеровский С. Х., Кавитация в генераторах, «Энергетика и электрификация», 1970, № 1.

  А. Д. Перник.

  Акустическая кавитация. При излучении в жидкость звука с амплитудой звукового давления, превосходящей некоторую пороговую величину, во время полупериодов разрежения возникают кавитационные пузырьки на так называемых кавитационных зародышах, которыми чаще всего являются газовые включения, содержащиеся в жидкости и на колеблющейся поверхности акустического излучателя. Поэтому кавитационный порог повышается по мере снижения содержания газа в жидкости, при увеличении гидростатического давления, после обжатия жидкости высоким (порядка 103 кгс/см2 @ 102 Мн/м2) гидростатическим давлением и при охлаждении жидкости, а кроме того, при увеличении частоты звука и при сокращении продолжительности озвучивания. Порог выше для бегущей, чем для стоячей волны. Пузырьки захлопываются во время полупериодов сжатия, создавая кратковременные (порядка 10-6 сек) импульсы давления (до 103 Мн/м2 @ 104 кгс/см2 и более), способные разрушить даже весьма прочные материалы. Такое разрушение наблюдается на поверхности мощных акустических излучателей, работающих в жидкости. Давление при захлопывании кавитационных пузырьков повышается при снижении частоты звука и при повышении гидростатического давления; оно выше в жидкостях с малым давлением насыщенного пара. Захлопывание пузырьков сопровождается адиабатическим нагревом газа в пузырьках до температуры порядка 104 °С, чем, по-видимому, и вызывается свечение пузырьков при К. (т. н. звуколюминесценция). К. сопровождается ионизацией газа в пузырьках. Кавитационные пузырьки группируются, образуя кавитационную область сложной и изменчивой формы. Интенсивность К. удобно оценивать по разрушению тонкой алюминиевой фольги, в которой кавитирующие пузырьки пробивают отверстия. По количеству и расположению этих отверстий, возникающих за определённое время, можно судить об интенсивности К. и конфигурации кавитационной области.

  Если жидкость насыщена газом, то газ диффундирует в пузырьки и полного захлопывания их не происходит. Всплывая, такие пузырьки уносят газ и уменьшают содержание газа в жидкости. Интенсивные колебания газонаполненных пузырьков как в свободной жидкости, так и вблизи поверхности твёрдых тел создают микропотоки жидкости.

  Появление К. ограничивает возможность дальнейшего повышения интенсивности звука, излучаемого в жидкость, вследствие уменьшения её волнового сопротивления и соответствующего снижения нагрузки на излучатель (см. Импеданс акустический). Акустическая К. и связанные с ней физические явления вызывают ряд эффектов. Часть из них, например разрушение и диспергирование твёрдых тел, эмульгирование жидкостей, очистка поверхностей, деталей, обязана своим происхождением ударам при захлопывании пузырьков и микропотокам вблизи них. Другие эффекты (например, инициирование и ускорение химических реакций) связаны с ионизацией газа в пузырьках. Благодаря этим эффектам акустическая К. всё шире используется для создания новых и совершенствования известных технологических процессов. Большое число практических применений ультразвука основано на эффекте К.

  Акустическая К. имеет большое значение в биологии и медицине. Импульсы давления, возникающие в кавитационных пузырьках, обусловливают мгновенные разрывы микроорганизмов и простейших, находящихся в водной среде, подвергаемой действию ультразвука. К. используют для выделения из животных и растительных клеток ферментов, гормонов и др. биологически активных веществ.

  Лит.: Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., М., 1956; Рой Н. А., Возникновение и протекание ультразвуковой кавитации, «Акустический журнал», 1957, т. 3, в. 1, с. 3; Сиротюк М. Г., Экспериментальные исследования ультразвуковой кавитации, в кн.: Физика и техника мощного ультразвука, т, 2, М., 1968; Ультразвук в гидрометаллургии, М., 1969.

  Н. А. Рой.

Большая Советская Энциклопедия (КА) i009-001-236157955.jpg

Рис. 1. Кавитационный пузырь на торцовой поверхности вибрирующего стержня (десятикратное увеличение).

Большая Советская Энциклопедия (КА) i010-001-261822535.jpg

Рис. 4. Всасывающий патрубок насоса, выполненный из чугуна, со следами кавитационной эрозии.

Большая Советская Энциклопедия (КА) i010-001-273248166.jpg

Рис. 2. Кавитационная зона в трубке с местным сужением.

Большая Советская Энциклопедия (КА) i010-001-286712015.jpg

Рис. 3. Участок разрушенной поверхности гребного винта.


Перейти на страницу:
Изменить размер шрифта: