Большая Советская Энциклопедия (ОТ) i-images-158501809.png
 (4)

  или

Большая Советская Энциклопедия (ОТ) i-images-111973614.png
 (4, а)

  т. е. с точки зрения наблюдателя в L’ часы в L отстают. В силу принципа относительности отсюда следует, что с точки зрения наблюдателя в L’, все процессы в L замедлены в такое же число раз.

  Легко получить также, что размеры l всех тел, покоящихся в L, оказываются при измерении в L’ сокращёнными в

Большая Советская Энциклопедия (ОТ) i-images-140709832.png
 раз в направлении V:

Большая Советская Энциклопедия (ОТ) i-images-119992853.png
 (5)

  В частности, продольный диаметр сферы, движущейся со скоростью u относительно L’, будет при измерении в L¢ в

Большая Советская Энциклопедия (ОТ) i-images-125443435.png
 раз короче, чем поперечный. (Заметим, что это сокращение не обнаружилось бы на мгновенной фотографии сферы: из-за различного запаздывания световых сигналов, приходящих от разных точек сферы, её видимая форма остаётся прежней.)

  Для и. с. о. пространственно-временные эффекты, определяемые преобразованиями Лоренца, относительны: с точки зрения наблюдателя в L замедляются все процессы и сокращаются все продольные масштабы в L’. Однако это утверждение несправедливо, если хотя бы одна из систем отсчёта неинерциальна. Если, например, часы 1 перемещаются относительно L из А в В со скоростью u, а потом из В в А со скоростью — u, то они отстанут по сравнению с покоящимися A часами 2 в

Большая Советская Энциклопедия (ОТ) i-images-185850635.png
 раз; это можно обнаружить прямым сравнением, так что эффект абсолютен. Он должен иметь место для любого процесса; например, близнец, совершивший путешествие со скоростью u, вернётся в
Большая Советская Энциклопедия (ОТ) i-images-138522120.png
 раз более молодым, чем его брат, остававшийся неподвижным в и. с. о. Это явление, получившее название «парадокса близнецов», в действительности не содержит парадокса: система отсчёта, связанная с часами 1, не является инерциальной, т.к. эти часы при повороте в В испытывают ускорение по отношению к инерциальной системе; поэтому часы 1 и 2 неравноправны.

  При малых скоростях u преобразования Лоренца переходят в преобразования Галилея x’ = xut, y ’ = y, z’’ = z, t ’ = t, которые описывают связь между картинами различных наблюдателей, известную из повседневного опыта: размеры предметов и длительность процессов одинаковы для всех наблюдателей.

  Преобразования Пуанкаре оставляют инвариантной величину, называемую интервалом sAB между событиями А, В, которая определяется соотношением:

s2AB = c2(tAtB)2 – (xAxB)2 – (yAyB)2 – (zAzB)2. (6)

  Математически инвариантность s аналогична инвариантности расстояния при преобразованиях движения в евклидовой геометрии. Величины ct, х, у, z можно рассматривать как четыре координаты события в четырёхмерном пространстве Минковского: х = ct, х 1 = х, x 2 = у, x 3 = z, которые являются компонентами четырёхмерного вектора.

  Если вместо x ввести мнимую координату x 4 = ix = ict, то произвольное преобразование Пуанкаре можно записать в виде, полностью аналогичном формуле, описывающей вращения и сдвиги в трёхмерном пространстве.

  Вследствие того, что квадраты разностей временны'х и пространственных координат входят в (6) с разными знаками, знак s 2 может быть различным; геометрия такого пространства отличается от евклидовой и называется псевдоевклидовой. В такой геометрии интервалы разделяются на три типа: s 2 < 0, s 2 > О и s 2 = 0. Интервалы первого и второго типа называются соответственно времениподобными и пространственноподобными. Если s 2 ³ 0, знак tAtB не зависит от системы отсчёта. Это тесно связано с принципом причинности. Действительно, если s 2 ³ 0 и (для определённости) tA < tB, то события А и В могут быть связаны сигналом, распространяющимся со скоростью u £ с, т.е. А может быть причиной В. Обычные представления о причинности требуют тогда, чтобы в любой системе отсчёта событие В следовало за событием А. Инвариантность условия s 2 = 0 непосредственно выражает инвариантность скорости света. Если s 2 < 0, то знак tAtB может быть различным в разных и. с. о. Однако это не противоречит причинности, т.к. такие события не могут быть связаны никаким взаимодействием.

  Если s 2 < 0, то существует такая система отсчёта, в которой события А и В одновременны; в этой системе s 2 = –l 2, где l — обычное расстояние. При s 2 > 0 существует система отсчёта, в которой события А и В происходят в одной точке.

  В классической физике требование инвариантности законов физики относительно преобразований Лоренца означает, что любые физические величины должны преобразовываться как скаляры, векторы или тензоры в пространстве Минковского. Правила вычислений с такими величинами даются тензорным исчислением. Использование тензорного исчисления позволяет записывать законы физики в таком виде, что их лоренц-инвариантность становится непосредственно очевидной.

  Законы сохранения в теории относительности и релятивистская механика

  В О. т., так же как в классической механике, для замкнутой физической системы сохраняется импульс р и энергия Е. Трёхмерный вектор импульса вместе с энергией образует четырёхмерный вектор импульса-энергии с компонентами Е /с, р, обозначаемый как (Е /с, р). При преобразованиях Лоренца остаётся инвариантной величина

E 2(cp) 2 = m 2c 4, (7)

  где m – масса покоя частицы. Из требований лоренц-инвариантности следует, что зависимость энергии и импульса от скорости имеет вид

Большая Советская Энциклопедия (ОТ) i-images-168023954.png
,
Большая Советская Энциклопедия (ОТ) i-images-186763087.png
. (8)

  Энергия и импульс частицы связаны соотношением р = Eu/c2. Это соотношение справедливо также для частицы с нулевой массой покоя; тогда u = с и р = Е/с. Такими частицами, по-видимому, являются фотоны (g) и электронные и мюонные нейтрино. Из (8) видно, что импульс и энергия частицы с m ¹ 0 стремятся к бесконечности при u ® с.

  Обсуждалась возможность существования объектов, движущихся со скоростью, большей скорости света (т. н. тахионов). Формально это не противоречит лоренц-инвариантности, но приводит к серьёзным затруднениям с выполнением требования причинности.


Перейти на страницу:
Изменить размер шрифта: