Равенство (1) можно также представить в виде

 

Большая Советская Энциклопедия (УП) i-images-173044036.png
,..., (2)

Большая Советская Энциклопедия (УП) i-images-179175461.png
, …,
Большая Советская Энциклопедия (УП) i-images-161655955.png

  где

Большая Советская Энциклопедия (УП) i-images-108399501.png
  среднее (гидростатическое) напряжение, К – модуль всестороннего сжатия.

  Для анизотропного материала 6 зависимостей между компонентами напряжений и деформаций имеют вид:

 

Большая Советская Энциклопедия (УП) i-images-133331970.png
 (3)

 ...............................................................

  Из входящих сюда 36 коэффициентов cij называются модулями упругости, 21 между собой независимы и характеризуют упругие свойства анизотропного материала.

  Для нелинейного упругого изотропного материала в равенствах (2) всюду вместо m входит коэффициент

Большая Советская Энциклопедия (УП) i-images-106610010.png
, а соотношение
Большая Советская Энциклопедия (УП) i-images-168405661.png
 заменяется равенством
Большая Советская Энциклопедия (УП) i-images-160189392.png
, где величина eu называется интенсивностью деформации, а функции Ф и f, универсальные для данного материала, определяются из опытов. Когда Ф (eu) достигает некоторого критического значения, возникают пластические деформации. Законы пластичности при пропорциональном возрастании нагрузок или напряжений (простое нагружение) имеют тот же вид, но с др. значениями функций Ф и f (законы теории малых упруго-пластических деформаций), а при уменьшении напряжений (разгрузке) имеют место соотношения (1) или (2), в которых вместо sij и eij подставляются их приращения (разности двух текущих значений).

  Математическая задача У. т. при равновесии состоит в том, чтобы, зная действующие внешние силы (нагрузки) и т. н. граничные условия, определить значения в любой точке тела компоненты напряжений и деформаций, а также компоненты ux, uy, иz; вектора перемещения каждой частицы тела, т. е. определить эти 15 величин в виде функций от координат x, у, z точек тела. Исходными для решения этой задачи являются дифференциальные уравнения равновесия:

 

Большая Советская Энциклопедия (УП) i-images-116706859.png
,

Большая Советская Энциклопедия (УП) i-images-110225408.png
, (4)

Большая Советская Энциклопедия (УП) i-images-104040065.png

  где r – плотность материала, XYZ – проекции на координатные оси действующей на каждую частицу тела массовой силы (например, силы тяжести), отнесённые к массе этой частицы.

  К трём уравнениям равновесия присоединяются 6 равенств (1) в случае изотропного тела и ещё 6 равенств вида:

 

Большая Советская Энциклопедия (УП) i-images-115270119.png
, …,
Большая Советская Энциклопедия (УП) i-images-173706391.png
, …, (5)

  устанавливающих зависимости между компонентами деформаций и перемещений.

  Когда на часть S1 граничной поверхности тела действуют заданные поверхностные силы (например, силы контактного взаимодействия), проекции которых, отнесённые к единице площади, равны Fx, Fy, Fz, а для части S2 этой поверхности заданы перемещения её точек jх, jу, jz, граничные условия имеют вид:

 

Большая Советская Энциклопедия (УП) i-images-147785250.png
 (на S1) (6)

 

Большая Советская Энциклопедия (УП) i-images-197952020.png
,
Большая Советская Энциклопедия (УП) i-images-188871304.png
,
Большая Советская Энциклопедия (УП) i-images-142388943.png
 (на S2) (7)

  где l1, l2, l3косинусы углов между нормалью к поверхности и координатными осями. Первые условия означают, что искомые напряжения должны удовлетворять на границе S1 трём равенствам (6), а вторые – что искомые перемещения должны удовлетворять на границе S2 равенствам (7); в частном случае может быть jx = jy = jz = 0 (часть поверхности S2 жестко закреплена). Например, в задаче о равновесии плотины массовая сила – сила тяжести, поверхность S2 подошвы плотины неподвижна, на остальной поверхности S1 действуют силы: напор воды, давление различных надстроек, транспортных средств и т.д.

  В общем случае поставленная задача представляет собой пространственную задачу У. т., решение которой трудно осуществимо. Точные аналитические решения имеются лишь для некоторых частных задач: об изгибе и кручении бруса, о контактном взаимодействии двух тел, о концентрации напряжений, о действии силы на вершину конического тела и др. Т. к. уравнения У. т. являются линейными, то решение задачи о совместном действии двух систем сил получается путём суммирования решений для каждой из систем сил, действующих раздельно (принцип линейной суперпозиции). В частности, если для какого-нибудь тела найдено решение при действии сосредоточенной силы в какой-либо произвольной точке тела, то решение задачи при произвольном распределении нагрузок получается путём суммирования (интегрирования). Такие решения, называются Грина функциями, получены лишь для небольшого числа тел (неограниченное пространство, полупространство, ограниченное плоскостью, и некоторые др.). Предложен ряд аналитических методов решения пространственной задачи У. т.: вариационные методы (Ритца, Бубнова – Галёркина, Кастильяно и др.), метод упругих потенциалов, метод Бетти и др. Интенсивно разрабатываются численные методы (конечно-разностные, метод конечных элементов и др.). Разработка общих методов решений пространственной задачи У. т. – одна из наиболее актуальных проблем У. т.

  При решении плоских задач У. т. (когда один из компонентов перемещения равен нулю, а два других зависят только от двух координат) широкое применение находят методы теории функций комплексного переменного. Для стержней, пластин и оболочек, часто используемых в технике, найдены приближённые решения многих практически важных задач на основе некоторых упрощающих предположений. Применительно к этим объектам специфический интерес представляют задачи об устойчивости равновесия (см. Устойчивость упругих систем).

  В задаче термоупругости определяются напряжения и деформации, возникающие вследствие неоднородного распределения температуры. При математической постановке этой задачи в правую часть первых трёх уравнений (1) добавляется член

Большая Советская Энциклопедия (УП) i-images-115351097.png
, где a – коэффициент линейного теплового расширения, T (x1, x2, x3)заданное поле температуры. Аналогичным образом строится теория электромагнитоупругости и упругости подвергаемых облучению тел.

  Большой практических интерес представляют задачи У. т. для неоднородных тел. В этих задачах коэффициент l, m в уравнении (1) являются не константами, а функциями координат, определяющими поле упругих свойств тела, которое иногда задают статистически (в виде некоторых функций распределения). Применительно к этим задачам разрабатываются статистические методы У. т., отражающие статистическую природу свойств поликристаллических тел.


Перейти на страницу:
Изменить размер шрифта: