где L(n) = lnp, если n = рк L(n)= 0, если n ¹ pk, эквивалентно такой же задаче для функции p(х). Функция Y(х) может быть выражена через интеграл от производящей функции — x¢(s)/ x(s):
Б. Риман высказал гипотезу, что все нетривиальные нули x (s) лежат на прямой Res = 1/2, из чего следует, что
y(x)=x + O (
Из справедливости любой из последних формул следует гипотеза Римана. По аналогичной схеме были изучены L-ряды Дирихле. В 1896 Ш. Ла Валле Пуссен и Ж. Адамар доказали, что x(s) ¹ 0 в области Res ³ 1, откуда следовала формула (асимптотический закон распределения простых чисел)
Кроме этого, Ш. Ла Валле Пуссен доказал, что x(s) ¹ 0 в области
и что
где с и c1 — положительные постоянные. Такой же результат был получен им и для простых чисел в арифметических прогрессиях: если p(х, k, l) — число простых чисел вида kn + 1, n £ х, k и l— взаимно простые числа, то
Метод получения асимптотических формул для p(х), Y(х), p(х, k, l), названный методом комплексного интегрирования, нашёл многочисленные применения. Основой этого метода служит формула
Теория квадратичных форм, начатая работами Л. Эйлера, К. Гаусса, П. Дирихле, продолжала своё развитие в работах А. Н. Коркина, Е. И. Золотарёва и А. А. Маркова. В частности, А. Н. Коркин и Е. И. Золотарёв доказали теорему: переменным любой положительной кватернарной квадратичной формы определителя D можно придать такие целые значения, что значение формы не будет превосходить величины
Исследования А. А. Маркова относились к изучению минимумов бинарных квадратичных форм положительного определителя и привели к целому ряду новых открытий.
Проблемы целых точек в областях на плоскости получили своё дальнейшее развитие в трудах Г. Ф. Вороного, создавшего (1903) метод, с помощью которого доказано, что остаточный член в асимптотической формуле Дирихле для числа целых точек под гиперболой имеет порядок корня кубического из главного члена. Позднее (1906) метод Вороного был перенесён В. Серпиньским на проблему Гаусса целых точек в круге с тем же результатом. В это же время были предприняты попытки найти решения аддитивных проблем Ч. т. и, в частности, решить Варинга проблему. В 1909 она была решена Д. Гильбертом.
Второе, третье и четвёртое десятилетия 20 в. были исключительно богаты новыми идеями и методами в Ч. т. Г. Вейль, решая задачи, связанные с устойчивостью Солнечной системы, пришёл к понятию равномерного распределения дробных долей целочисленных функций: дробные доли действительнозначной функции F (x) равномерно распределены на [0,1) при х= 1,2,3.,.., если число попаданий дробных долей F (x) на любой интервал из [0.1) пропорционально длине этого интервала. Он доказал, что для равномерности распределения дробных долей F (x) необходимо и достаточно выполнение соотношения:
при любом фиксированном ½m½>0, и получил нетривиальные оценки ½S (F)½ в случае, когда F (x) — многочлен, старший коэффициент которого есть иррациональное число. И. М. Виноградов, изучая распределение значений символа Лежандра на отрезках малой длины по сравнению с модулем, доказал (1914) неравенство
из которого следует, что квадратичных вычетов и невычетов на любом отрезке, длина которого чуть больше
Норвежским математиком В. Бруном доказаны (1919) теоремы, которые в определённом смысле приближались к проблеме простых близнецов и проблеме Эйлера. А именно, им доказана бесконечность числа пар u1 и u2, таких, что u1 — u2= 2 и число простых делителей u1 и u2 не превосходит девяти; а также разрешимость уравнения u1 + u2 = 2N, с теми же условиями на u1 и u2
Г. Харди и Дж. Литлвуд опубликовали (1922—23) серию мемуаров под общим названием «Partitio Numerorum», в которых развили общий метод решения аддитивных задач Ч. т., получивший впоследствии название «кругового». Этот метод (на примере решения проблемы Варинга) состоит в следующем: пусть
[missing picture],
тогда
где Ik (N) — число решений уравнений Варинга, которое находят по формуле
Г. Харди и Дж. Литлвуд изучали последний интеграл при R ®1— 0. Окружность интегрирования определённым образом разбивается на «большие» и «малые» дуги (отчего и получил название метод), при этом интегралы по «большим» дугам дают главный член асимптотической формулы для Ik (N), а по «малым» — остаточный. Т. о. получают асимптотическую формулу величины

где s(N) — некоторый «особый ряд»; s(N) ³ с > 0, d >0 и k ³ (n —2)2n¾1 + 5. С помощью этого метода Г. Харди и Дж. Литлвуд получили следующие результаты: дали новое решение проблемы Варинга, причём в форме более точной, чем это было у Д. Гильберта; дали условное решение проблемы Гольдбаха; сформулировали и выписали гипотетические формулы для количества решений большого числа уравнений с простыми числами.