В своих дальнейших опытах Кулон измерил, с какой силой отталкиваются два заряда, если изменяется расстояние между ними. Оказалось, что когда расстояние между шариками увеличивается вдвое, сила отталкивания ослабевает вчетверо. Если расстояние возрастало втрое, — сила отталкивания уменьшалась в девять раз.
Так было установлено, что сила взаимодействия двух зарядов пропорциональна произведению величин этих зарядов и обратно пропорциональна квадрату расстояния между ними. Эта зависимость получила название закона Кулона.
С помощью крутильных весов можно определить не только силу отталкивания двух одноименных зарядов, но и величину самих зарядов. Для этого необходимо выбрать единицу заряда.
Ученые условились принять за единицу количества электричества заряд шарика, который отталкивает другой точно такой же заряд с силой в 1 дину[1] при расстоянии между шариками в 1 сантиметр и при условии, что они разделены сильно разреженным пространством — находятся в вакууме.
Для практических целей эта мера оказались слишком маленькой, и в употребление вошла другая, более крупная мера — кулон.
Кулон больше первоначальной единицы ровно в три миллиарда раз.
Электричество может течь
Уже на заре изучения электрических явлений ученые убедились, что электрические заряды могут не только накапливаться, но и перетекать с одного предмета на другой по проводнику.
Герике, привязав к серному шару хлопчатобумажную нитку с шариком из слоновой кости на конце, заметил, что заряд серного шара распространился по нитке и наэлектризовал костяной шарик, который тоже стал притягивать легкие предметы.
Другие исследователи научились передавать заряд по изолированным бечевкам и шнуркам на большие расстояния. При этом выяснилось, что лучше всего заряды движутся по изолированным металлическим проволокам.
Именно металлы, которые Джильберт называл «неэлектрическими материалами», оказались хорошими проводниками электричества, а почти все остальные твердые вещества — плохими проводниками. Изоляторы, по которым заряды совсем не передвигались, стали называть диэлектриками.
Копилка зарядов
В середине XVIII века было сделано важное изобретение. Придумали прибор, получивший название лейденской банки, ее изготовили из обыкновенной стеклянной банки. Снаружи банку обернули листом тонкого металла, который охватил ее наподобие подстаканника; внутри также поместили металлическую обкладку. Внутреннюю обкладку соединили с металлическим стержнем, увенчанным шариком и пропущенным сквозь крышку банки (рис. 14).
Рис. 14. Лейденская банка.
Чтобы зарядить лейденскую банку, шарик соединяют с каким-либо источником электричества, а внешнюю обкладку заземляют — для этого достаточно держать банку в руке. Внутренняя обкладка приобретает электрический заряд, а заряды во внешней обкладке разделяются, положительные сдвигаются в одну сторону, а отрицательные — в другую. Заряды, оказавшиеся на наружной поверхности внешней обкладки, уходят в землю, и тогда каждая из обкладок приобретает заряды разных знаков.
Заряды, разделенные стенкой банки, как перегородкой, взаимно притягиваясь, удерживают друг друга. Благодаря этому лейденская банка способна накапливать и сохранять исключительно большие заряды — гораздо больше, чем могла бы накопить каждая из ее обкладок, взятая порознь.
Чтобы обнаружить заряд банки, достаточно соединить металлическим проводником наружную обкладку с шариком. Электрический разряд происходит в виде искры, с треском проскакивающей между концом проводника и шариком.
Если разрядить банку собственными руками, то человек почувствует болезненный удар. Двести лет назад один из физиков соорудил большую лейденскую банку и дал испробовать ее действие своей любознательной жене. Разряд лейденской банки был так силен, что женщина заболела и слегла в постель.
Разряд большой банки или батареи, то есть группы банок, у которых все внутренние обкладки соединены между собой металлическим проводником, а все наружные — между собой другим проводником, может оказаться смертельным. Лейденские банки следует разряжать не рукой, а металлическим разрядником.
Позже ученые убедились, что копилку электрических разрядов не обязательно делать в виде банки. Ее может заменить тонкая стеклянная пластинка, обложенная с двух сторон металлическими листочками: фольги или станиоля. Можно также укладывать куски стекла стопкой, прослаивая их станиолем. Все четные и все нечетные металлические прослойки следует порознь соединить между собой.
Вместо стекла годится любой другой изолятор-диэлектрик: слюда, парафинированная бумага, наконец, воздух (рис. 15).
Рис. 15. Первоначально в лейденской банке внутренней обкладки не делали, а наливали в банку воду.
Такие приборы получили название: конденсаторы, то есть «уплотнители».
При разряде лейденской банки весь заряд одной обкладки переходит на другую и нейтрализует накопленный на ней противоположный заряд. По проводу, соединяющему обкладки, хотя бы он и был сделан из длинной проволоки, перетекает весь электрический заряд. Такое передвижение заряда получило название — электрический ток.
Так постепенно, шаг за шагом, на протяжении почти трехсот лет люди изучали электрические явления.
Многие исследователи ошибались и выдвигали необоснованные, не подкрепленные опытом догадки. Другие ученые увязали в разнообразных бесчисленных опытах, никак не осмысливая свою работу, и их исследования напоминали бесцельное блуждание в лесной чаще.
Но все же ценой огромных усилий, в постоянной борьбе с заблуждениями и ошибочными гипотезами, постепенно развивалась наука об электричестве.
Мнение древних философов и ученых о незначительности электрических явлений превратилось в свою противоположность — наука устанавливала, что мир электрических явлений безгранично обширен.
Не в шутку, а совершенно серьезно один ученый как-то воскликнул: «Скажите мне, что такое электричество, и я объясню вам все остальное».
В представлении этого ученого происходящие в природе электрические явления приобрели важное, всеобъемлющее значение.
Глава вторая. Ученые догадываются о существовании электрона
Творец подлинной науки
Уроженец Севера, Ломоносов еще ребенком любовался красивым и величественным явлением природы — полярными сияниями. Он видел, как ясной зимней ночью высоко над землей появляется лента, сотканная из нежных, мерцающих лучей зеленоватого света и похожая на край бархатного занавеса, спустившегося из заоблачной выси.
Занавес непрерывно колышется, как бы под дуновением неощутимого ветерка. По его лучистой бахроме пробегают волны, и сияние колеблется, словно дышит, то разгораясь, то притухая.
Иногда вместо зеленоватой ленты над полюсом встают столбы света желтоватого, розового или фиолетового оттенков. Они подымаются ввысь, неожиданно разворачиваются веером, превращаются в лучистую корону или сказочную арку, сверкающую над снежной равниной.
Спустя некоторое время сияние расплывается, тускнеет, и на его месте остается бесформенное светящееся облако, которое, постепенно слабея, исчезает, растворяясь во тьме полярной ночи.
Рис. 16. Ясной зимней ночью высоко над землей появляется лента, как бы сотканная из нежных мерцающих лучей.
Северные сияния видны не только на крайнем Севере, ими случается любоваться и в Ленинграде, в Москве и даже в более южных городах.
1
Дина — единица силы, принятая в физике. Приблизительно равна весу 1 миллиграмма.