Поскольку неизменно положение плоскости, в которой лежит путь частицы, постольку сохраняется и направление оси вращения. Когда же внешняя сила заставляет частицы тела изменить направление движения, то инерция частиц сопротивляется этой силе. Это сопротивление ощущается как сила, поворачивающая ось вращения.

Если держать в руках концы оси вращающегося велосипедного колеса и поворачивать ось в горизонтальной плоскости, то частицы колеса сопротивляются изменению их движения и руки испытывают давление вертикальных сил. Наоборот, при поворачивании оси в вертикальной плоскости силы давления действуют в горизонтальном направлении. Рассматривая относительное направление сил, меняющих положение оси вращения и сопротивления этому изменению, можно вывести такое правило: когда на ось вращающегося волчка действует отклоняющая сила, то возникает движение оси в направлении, перпендикулярном этой силе.

Это явление удобно наблюдать на приборе особого устройства. Такой прибор состоит из горизонтального стержня, несущего вращающийся диск и груз. Диск и груз находятся по сторонам от точки опоры стержня, могущего поворачиваться как в вертикальной, так и в горизонтальной плоскости.

Груз уравновешивает диск, но если передвинуть его дальше от опоры, то он станет поворачивать ось вращения диска в вертикальной плоскости. Вследствие этого стержень получит лишь легкое колебание вверх и вниз, но зато станет вращаться около точки опоры в горизонтальной плоскости, то-есть перпендикулярно к направлению отклоняющей силы.

Волчок, изученный Эйлером и Лагранжей, — не вполне свободное тело. Более свободным является гироскоп Боненбергера.

О движении (с илл.) i_058.jpg

Рычажный гироскоп Фесселя. Вращающийся диск сохраняет положение оси, но под влиянием силы тяжести прибор получает вращение в горизонтальной плоскости.

Гироскоп — массивный диск, вращающийся в обойме, подвешенной по способу Кардана. Он находится внутри кольца, могущего вращаться около оси, перпендикулярной к оси диска; кольцо, в свою очередь, помещено внутри другого кольца, также легко вращающегося около оси, перпендикулярной к оси вращения первого кольца.

Когда диск гироскопа приведен в быстрое движение, то при любом изменении положения прибора ось вращения сохраняет свое направление в пространстве. Если она была направлена на какую-нибудь звезду, то будет следовать за суточным движением этой звезды.

Это свойство гироскопа позволяет убедиться во вращении Земли. Движения Земли не оказывают влияния на положение оси гироскопа в пространстве. Они увлекают центр тяжести гироскопа, но не могут изменить направление вращения его оси.

О движении (с илл.) i_059.jpg

Гироскоп. Тяжелый вращающийся диск, установленный в кардановом подвесе, кольца которого могут вращаться около двух взаимно перпендикулярных осей.

Нужно, впрочем, заметить, что, направленный на звезду, гироскоп не должен был бы изменять своего направления даже в том случае, если бы он не вращался. Однако сопротивление воздуха и незначительное трение частей прибора неизбежно будут отклонять его ось.

При быстром же вращении инерция движения сопротивляется не только этому ничтожному трению, но и довольно сильным толчкам.

Движение оси гироскопа под действием отклоняющей силы происходит без инерции; оно длится только в течение времени, пока на ось действует отклоняющая сила. По выражению известного русского механика, академика В. Л. Кирпичева, отклоняющая сила «держит полюс (конец оси вращения. — Ф. Б.) в узде, не позволяет ему ни разбегаться, ни отставать».

Знание свойств гироскопа имеет важное практическое значение. При всех расчетах, связанных с вращением тяжелых частей механизмов, нужно принимать во внимание возникающие вследствие него динамические давления.

Эти давления вызываются поворотом вращающегося тела около оси, перпендикулярной к плоскости, в которой лежат действующие на него силы.

О движении (с илл.) i_060.jpg

Гироскоп. Вращающийся диск сохраняет горизонтальное положение оси в пространстве. Он свободно висит в воздухе, но кольцо движется в горизонтальной плоскости.

На современных судах двигателями служат обычно быстро вращающиеся турбины. Во время качки и при поворотах судна ось турбины отклоняется внешней силой. Это влечет за собой возникновение добавочного давления на подшипники, в которых вращается ось турбины.

Возникающими силами можно воспользоваться для уменьшения качки судна. Для этого в трюме судна нужно установить тяжелый гироскоп, чтобы при изменении его положения вследствие качки сопротивление оси гироскопа уменьшало раскачивание судна волнами.

О движении (с илл.) i_061.jpg

При боковой качке на ось гироскопа действует пара сил, поворачивающих ее в плоскости, перпендикулярной продольной оси судна. Сопротивление гироскопа ослабляет качку.

Направление давлений в подшипниках оси гироскопа при боковой или килевой качке можно определить, пользуясь приведенным опытом с вращающимся велосипедным колесом.

В авиационных приборах также часто пользуются гироскопами, например для получения «искусственного горизонта»: установленная в горизонтальной плоскости ось гироскопа сохраняет это положение при всех движениях самолета, указывая на угол наклона его оси.

Теория вращения твердого тела получила также широкое применение для объяснения некоторых астрономических явлений, связанных с вращением Земли. Важнейшее из этих явлений — предварение равноденствий, или прецессия, замечено еще древними астрономами.

Вращение Земли

О вращении волчка мы судим, наблюдая его движение относительно окружающих предметов. Подобно этому можно изучать и вращение Земли по отношению к звездам, которые в этом случае считаются неподвижными.

Суточное движение звездного неба — кажущееся явление. Это отражение вращения самой Земли. Когда Земля повернется около своей оси на какой-либо угол, на такой же угол в обратном направлении изменится и направление, в котором мы видим каждую звезду.

Оси кажущегося движения небесной сферы и действительного вращения Земли совпадают: ось мира, около которой вращается небесная сфера, есть воображаемое продолжение земной оси. Точки неба, в которых она как бы «упирается» в небесную сферу, — полюсы мира.

В Северном полушарии полюс мира находится в настоящее время вблизи Полярной звезды.

Если ось вращения Земли не меняла бы своего положения относительно звезд, то полюсы мира оставались бы всегда на одном месте.

Полюс мира ничем не отмечен на небесной сфере, но он вполне точно определяется астрономическими наблюдениями. Если бы полюс мира передвинулся, это значило бы, что изменилось и направление в пространстве земной оси.

Как доказали астрономические наблюдения, полюс мира не остается на одном месте. Он медленно движется среди звезд вокруг полюса эклиптики — так называется точка пересечения перпендикуляра, восстановленного в центре орбиты Земли, с небесной сферой[18].

Следовательно, земная ось движется по конической поверхности с вершиной конуса в центре Земли. Это движение вполне подобно тому, которое совершает ось вращающегося волчка, отклоняемая силой тяжести. Таким же образом объясняется и движение земной оси.

Земля немного сжата у полюсов и вытянута вдоль экватора. Разность полярного и экваториального радиусов равна 21,5 километра. Можно представить себе фигуру Земли как шар, опоясанный по экватору кольцом.

Притяжение Луны поворачивает экваториальное кольцо Земли в плоскость лунной орбиты. Поэтому оно отклоняет и ось вращения Земли. Вследствие гироскопического эффекта экваториальное кольцо получает движение, в результате которого ось вращения Земли описывает поверхность конуса.

вернуться

18

При движении земной оси по конусу меняется и положение плоскости экватора, причем точка весеннего равноденствия перемещается с востока на запад. Вследствие этого прямое восхождение всех звезд, отсчитываемое от этой точки, постоянно меняется на одну и ту же величину, что было замечено астрономами еще в древности.


Перейти на страницу:
Изменить размер шрифта: