Мне еще пришлось во время войны немного поработать на станках с ременным приводом. Очень было неудобно. Ремень часто ослабевал и проскальзывал на шкиве, а то и просто рвался. На заводе для починки ремней специально держали шорника. Да и опасно работать с ременной передачей. Я сперва посмеивался. Мне очень нравилось бросать кепку в трансмиссию, по ходу ремня. Бросишь ее, она нырнет под шкив, обогнет его, а потом со страшной быстротой вылетает и ударяется в потолок. Но однажды я работал на сверлильном станке, у которого ограждение ремня было снято. Тут уж получилось не так весело. Я работал без шапки и, как говорится, «ахнуть не успел», как волосы мои втянуло в ремень и меня с размаху ударило лицом об станок. К счастью, я отделался клоком волос, разбитым носом и шишкой на лбу. Но могло быть и хуже.
А теперь трансмиссии такой нет. У каждого станка мотор внутри, бывает даже по нескольку. Если привод от мотора к станку осуществлен с помощью ремня (так еще часто делают), то и ремень находится внутри станка. И никаких валов под потолком, и никаких оглобель для включения. Есть на каждом станке маленькая коробочка с черной и красной кнопкой: «Пуск» и «Стоп», а для переключения скоростей достаточно повернуть рычаги. И, что не менее важно, получается большая экономия электроэнергии.
Где только не устанавливаются теперь электродвигатели!
Мощный электродвигатель для рольгангов прокатного стана.
От громадных, мощностью в тысячи лошадиных сил, моторов, вращающих прокатные станы, до микродвигателей, величиной с наперсток, устанавливаемых в различной аппаратуре. Устанавливают двигатели и на дизель-электрических судах и поездах, на электровозах, трамваях, составах метро, троллейбуса, на швейных машинках, в бритвах и на самых неприятных машинах на свете — на бормашинах. Даже автомобили и те не обходятся без них. Только точильщики крутят свои точила, как и тысячу лет назад, — ногой.
Микродвигатель.
Если бы электричество позволило только ввести в практику новый тип двигателя, то и тогда его вклад в промышленность был бы очень велик. Но электричество позволило и многое другое. Так, например, оно позволило создать новые средства связи. О некоторых из них — телеграфе и телефоне мы уже знаем. Электротехника создала весьма совершенные источники света, от дуговых ламп и ламп накаливания до ламп дневного света.
Однако электричество сыграло в промышленности гораздо большую роль. Оно определило развитие промышленности, не только дав ей новый источник силы, но и вмешавшись в самые методы производства продукции, в технологию. Вспомним, например, открытие гальванопластики и гальваностегии, сделанное в 1838 году Б. С. Якоби.
Но и это далеко не все. Если бы только этим ограничивались достоинства электрической энергии, Владимир Ильич Ленин, может быть, и не дал бы своего знаменитого определения, что «Коммунизм это есть Советская власть плюс электрификация всей страны». Недаром Ленин в самые первые годы Советской власти лично руководил составлением знаменитого плана электрификации России, плана ГОЭЛРО (плана Государственной комиссии по электрификации России).
Он создавался в 1920 году, когда Советской России приходилось испытывать громадные трудности: ведь еще не кончилась гражданская война, не работали многие заводы и фабрики, не хватало самого необходимого. В декабре 1920 года состоялся Восьмой Всероссийский съезд Советов. На этом съезде был одобрен план ГОЭЛРО. Он предусматривал сооружение 30 районных электростанций. Их строительство было завершено досрочно, в 1931 году.
Ленин не был специалистом в электротехнике. Он был гениальным философом-марксистом, и это давало ему возможность видеть в электричестве и электротехнике такие стороны, которые в те времена еще неясны были ни ученым, ни инженерам. Так же знал Ленин и об электричестве. И его определение коммунизма говорит об очень важном, основном принципе развития не только общественных отношений, но и промышленности при социализме и коммунизме.
Какие же качества дали возможность получить столько пользы от электричества и позволяют нам ждать от электрической энергии гораздо большего?
Давайте перечислим, какие виды энергии мы знаем на сегодняшний день и используем для наших целей.
Прежде всего, энергия механическая — энергия ветра, падающей воды, энергия вращения любого двигателя, энергия движения любого тела.
Затем следует энергия тепловая — энергия солнца, энергия пара, энергия, освобождающаяся при сгорании различных видов топлива. По существу, горение, окисление есть химический процесс, при котором энергия химическая переходит в тепловую. При других реакциях тепловая энергия может переходить в химическую.
Далее идет электрическая энергия. Потом лучистая энергия — световая, электромагнитная. И, наконец, новейшие достижения физики открыли нам и позволяют приступить к использованию атомной энергии.
Давайте рассмотрим основные свойства электрической энергии. Одним из важнейших ее свойств и достоинств является то, что она легко и прямым путем преобразуется в любой другой вид энергии: в механическую, с помощью различных электродвигателей и электромагнитов; в тепловую, с помощью разнообразных электронагревательных приборов; в лучистую, с помощью электроосветительных и радиоприборов, а также рентгеновских трубок; в химическую — в аккумуляторах. Другое, не менее важное свойство электроэнергии — это то, что она также прямым путем может быть получена из всех других видов энергии. Правда, пока еще не нашли путей прямого преобразования атомной энергии в электрическую. Но работы в этом направлении ведутся большие, и, возможно, не за горами то время, когда будет найдено решение этой великой задачи.
Что означает, когда говорят, что электрическая энергия прямым путем может быть преобразована из любых других видов энергии?
Возьмем, к примеру, получение электрической энергии из тепловой. Есть несколько методов. Первый, наиболее распространенный, вам хорошо известен, это метод, используемый на электростанциях; он относится к косвенным методам получения электроэнергии. Топливо сжигают в топках. Сгорая, оно нагревает воду. Получившийся в результате пар высокой температуры и высокого давления подается в турбину. Под воздействием струи пара турбина вращается и приводит в движение генератор. На выходе генератора развивается электрическое напряжение. Вот сколько получилось этапов: преобразование энергии огня в энергию пара с помощью котла, преобразование энергии пара в механическую энергию с помощью турбины и, наконец, преобразование механической энергии в электрическую с помощью генератора — три этапа!
Второй метод не требует столь сложных и громоздких преобразований. Вы слышали о так называемых термоэлементах. С помощью термоэлементов энергия получается из тепловой непосредственно. Достаточно нагреть спай двух металлов, например меди и висмута, составляющих термоэлемент, чтобы возникла электродвижущая сила. Термоэлектрический эффект был открыт членом Берлинской академии Т. Зеебеком еще в 1821 году. Такой метод получения электроэнергии, как мы видим, является методом прямого получения электрической энергии из тепловой. Беда только в том, что он очень мало эффективен и не может быть применен для создания мощных источников электрического тока.
В последние годы найден новый метод прямого получения электрической энергии из тепловой. Электрическая энергия получается с помощью новых полупроводниковых материалов. Этот путь преобразования тепловой энергии в электрическую уже гораздо более эффективен. Так, тепла обычной керосиновой лампы — «молнии» хватает, чтобы от полупроводникового термоэлемента работал радиоприемник.
Полупроводниковый термогенератор.