Вспомним снова о центробежном регуляторе Уатта. Он как раз может быть отнесен к автоматическим устройствам такого типа, правда, к самым примитивным. Вращающийся вал регулятора, связанный с маховиком машины, передает информацию, в данном случае — информацию о скорости вращения, к чувствительному элементу — грузикам на шарнирах. Эти грузики «чувствуют» изменения в скорости вращения и в зависимости от этого изменения расходятся или приближаются друг к другу. Такое движение преобразуется в управляющие сигналы и передается рычагом к заслонке, помещенной в паропроводе.
Как мы видим, в регуляторе Уатта некому думать, а между тем такой регулятор заменяет думающего человека и управляет процессом (поддерживает обороты машины неизменными) лучше человека. В этом ничего удивительного нет. Ведь когда изобретали регулятор, человек, в данном случае Уатт, сам заранее подумал за регулятор и продумал действия регулятора во всех возможных обстоятельствах и придал регулятору такие свойства, что регулятор всегда и при всех условиях воздействует на процесс в таком же направлении, в каком это сделал бы на его месте думающий человек. Таким же образом работают и многие другие автоматы и те же математические и логические машины. Правда, в последнем случае действия машины действительно очень напоминают отдельные процессы человеческого мышления, но все-таки это вовсе не означает, что машина сама умеет мыслить. Однако вопросы, которые может решать математическая машина, очень сложные, трудные вопросы. Такая машина может иметь очень большое количество «органов чувств», собирающих большое количество необходимой информации, а необыкновенное быстродействие «думающих» или регулирующих органов позволяет рассчитать или продумать за очень малые промежутки времени очень большое количество вариантов решений и выбрать самое наилучшее. Выбранное решение передается в виде команд на исполнительные органы.
Теперь мне хочется задать вам такой вопрос: какова роль электричества в автоматике и почему именно электротехника и особенно электроника играют в автоматике столь большую роль? Ответ на этот вопрос кроется в тех замечательных свойствах электрической энергии, о которых мы уже говорили. Именно эти свойства позволили применять автоматику в таких областях, где одна механика бессильна что-либо сделать.
Я уже говорил, что, для того чтобы автомат мог работать, он должен чувствовать различные изменения в процессе, которым он управляет. И, для того чтобы процесс происходил в точно заданных пределах, автомат должен чувствовать самые малейшие изменения. Если этого не будет, то невозможно осуществить и точное регулирование процесса. Как известно, регулируемые процессы могут быть самого различного рода: регулирование оборотов двигателя, регулирование температуры печи или холодильной камеры, поддержание постоянства давления в котле, регулирование громкости звука в приемнике и тысячи других самых разнообразных процессов. И в каждом случае регулируется одна или несколько физических величин.
Эти величины могут быть самыми разными, но регулятору надо их уметь чувствовать, то есть иметь соответствующие чувствительные органы. Именно благодаря свойству электроэнергии превращаться прямым путем из любых других видов энергии сконструированы в настоящее время чувствительные элементы, датчики, основанные на методе преобразования физических величин в электрические, позволяют чувствовать разнообразнейшие физические величины, измерять их и переводить в электрические сигналы — на язык, понятный электрической и электронной автоматике. Другое важнейшее обстоятельство, особенно заметное в электронной автоматике, выражается в том, что электрические датчики физических величин очень чувствительны. Что же касается электроники, то она вполне свободно оперирует даже с самыми ничтожными электрическими сигналами, мощность которых невозможно себе представить, так она мала.
Предположим, что нам потребовалось поддерживать строго постоянной яркость света обычной электрической лампы накаливания. Для этого нам придется создать автоматический регулятор, который будет так менять ток в цепи накала лампы, что ее яркость будет оставаться неизменной.
Для того чтобы создать такой автомат, нужно прежде всего научиться измерять величину яркости и величину отклонений яркости от заданной. Каким образом ее можно измерить? Электроника, например, дает нам для этих целей готовый электровакуумный прибор — фотоэлемент. Ток через фотоэлемент будет тем больше, чем больше сила падающего на фотоэлемент света. А можем ли мы средствами механики создать устройство, замеряющее яркость и ее отклонения? Какие физические явления можем мы использовать для этого?
Выдающийся физик П. Н. Лебедев в свое время доказал, что свет давит на стоящие на его пути преграды. Давление это столь ничтожно, что измерить его необыкновенно трудно. Лебедев сумел доказать, что это давление имеется, и даже измерил его величину с помощью механических устройств. До сих пор физики мира поражаются необыкновенной тонкости и остроумию лебедевских экспериментов. Однако устройства, примененные Лебедевым в своих опытах, несмотря на то что они чувствуют световое излучение, в качестве механических датчиков яркости для автомата использоваться не могут. Те усилия, которые развиваются в таких механических устройствах, столь ничтожны, что не могут быть использованы не только непосредственно, но и при применении каких-либо механических усилителей.
Другое дело фотоэлемент. Во-первых, он гораздо чувствительнее к энергии светового излучения, чем любое механическое устройство. Кроме того, ток, протекающий через фотоэлемент, может быть усилен в десятки и сотни тысяч раз с помощью электронных ламп, а теперь и с помощью транзисторов. Мощности же усиленного тока вполне хватит на то, чтобы привести в движение любой исполнительный элемент, скажем — моторчик, перемещающий ползунок реостата, включенного в цепь накала лампы.
Если яркость мала, ток через фотоэлемент будет ниже нормального и автомат выработает такие управляющие сигналы или команды, которые заставят моторчик вращаться так, чтобы ползун, реостата увеличивал бы ток через лампу. Если яркость, наоборот, возросла, то управляющие сигналы заставят моторчик поменять направление вращения на обратное и уменьшать ток через лампу. Когда яркость лампы равна требуемой, на моторчик либо вовсе не подаются никакие сигналы, либо подаются специальные сигналы, запрещающие моторчику вращаться. Впрочем, для моторчика отсутствие сигналов тоже является сигналом. Если на моторчик не подано напряжение, он как раз и не может вращаться.
Как мы с вами говорили, механическую энергию нельзя передавать на большие расстояния, электрическую энергию и особенно радиоволны можно передавать практически на любые расстояния. Это позволяет осуществлять регулирование процессов на таких объектах, которые могут находиться на очень больших расстояниях от места, где установлен автомат, управляющий этими процессами.
Например, можно автоматически управлять полетом самолета или ракеты с земли. Управляющие органы автоматов будут установлены на каком-либо посту управления, а датчики и исполнительные органы — на самолете. Регулированием и управлением на больших расстояниях занимается так называемая телемеханика. Фактически механика в чистом виде в этой области техники почти не применяется, она только в названии осталась.
И еще об одном, важнейшем, свойстве электроники следует сказать — о быстродействии. В этом с электроникой в настоящее время ничто не может сравниться. Электронные чувствительные элементы и элементы управления могут легко реагировать на изменения, происходящие с огромной скоростью, практически в тот же миг, как случилось само изменение. Электронные элементы часто поэтому называют безынерционными.
Именно быстродействие электронных устройств позволило создать математические машины, способные рассчитать траекторию снаряда быстрее, чем снаряд пролетит по ней. Именно это свойство позволило производить за очень малое время расчетные работы такого объема, с которыми не могут справиться сотни квалифицированных расчетчиков.