Ветряная мельница. Ее недавно можно было увидеть во многих странах.
Ветер научились использовать лучше и в мореплавании.
Удалось это не сразу. Дело в том, что увеличение площади парусов, или, как говорят, парусности судка, само по себе ни к чему бы, кроме печальных результатов не привело. Стоило только подуть сильному ветру, и судно перевернулось бы. Значит, для того чтобы увеличить парусность, следовало прежде всего повысить остойчивость корабля. А для этого нужно было делать его более глубоко сидящим в воде и гораздо легче управляемым. Сперва у корабля руля не было. Его заменяло рулевое весло, укреплявшееся по правому борту. Оно было громоздким, тяжелым, и судно плохо его слушалось.
Выручил кормовой руль, тот самый, который применяется и в наши дни. Предполагают, что кормовой руль был изобретен в Китае. Его применение повысило маневренность судна, позволило увеличить осадку и тем самым сделало суда гораздо более устойчивыми, или остойчивыми, как говорят моряки. И лишь только после этого можно было значительно увеличивать площадь парусов. Все вы видели рисунки парусных кораблей, часто можно их увидеть и в кино.
Фрегат.
Вспомните-ка, какая громадная площадь парусов подставляется под напор ветра. Малейшее дуновение ветерка уже заставит двигаться корабль. Но это еще не все; усовершенствование парусного вооружения судна позволило двигаться гораздо круче к ветру, а значит, уменьшило зависимость от направления ветра.
Очень широко стала использоваться энергия падающей воды. Появилось множество водяных мельниц, многие производства также приводились в движение водой. И их тоже часто называли мельницами. Вспомните, например, очень смешное приключение Дон-Кихота и Санчо Пансы в лесу, возле сукновальных мельниц. На сукновальных мельницах, как это явствует из названия, занимались изготовлением сукна, а не помолом. Водой же приводились в движение и кузницы, и меха плавильных печей.
Но не только силу свою стремился увеличивать человек. Как и в прошедшую эпоху, он одновременно совершенствовался в других областях. Так, улучшилась техника измерения, особенно времени. Триста лет назад были изобретены первые часы, в которых оказалось возможным резко повысить точность измерения времени в сравнении с солнечными, водяными часами. Это были механические часы, а устройством, позволившим сделать такие часы точными, был маятник. Часы едва ли не самый первый в мире автомат.
Всем нам знакомы обычные часы-ходики. Это — типичные маятниковые часы.
Давайте посмотрим, как они работают. Прежде всего: что заставляет ходики работать? Ответ прост: сила земного тяготения. Гиря, подвешенная на цепочке, под действием силы тяжести тянет цепочку. Цепочка, в свою очередь, передает эту силу шестерне. Шестерня, связанная с цепочкой, вращается очень медленно, так, что не заметно глазу. Но она приводит в движение вторую шестерню, вторая — третью и так далее. И каждая последующая шестерня вращается все быстрее.
Можно так подобрать количество зубьев шестерен, что одна из шестерен будет вращаться в двенадцать раз медленнее другой. Та, что вращается медленнее, может быть названа часовой шестерней, та, что быстрее, — минутной. Таким же способом можно получить шестерню, делающую один оборот в минуту; это будет тогда секундная шестерня. Если теперь с осями часовой, минутной и секундной шестерен связать стрелки и нарисовать циферблат, мы получим часы.
Только это будут очень неточные часы. Хоть скорость вращения отдельных шестерен и связана жестко между собой, и часовая шестерня будет вращаться в двенадцать раз медленнее минутной, а секундная шестерня в шестьдесят раз быстрее минутной, нет никакой гарантии в том, что часовая шестерня, а следовательно, и все прочие, повернется за положенное ей время — ровно один час. Стоит измениться весу гири, увеличиться трению в осях шестерен, и сейчас же изменится скорость вращения шестерен. И ничего удивительного в этом нет. Так и должно быть. Но можно ли сделать так, чтобы часы все-таки шли точно?
Есть два пути. Один путь — сложный, громоздкий и ненадежный. Можно поместить механизм в термобаростат, где очень точно поддерживается температура, давление, влажность. Постараться уменьшить до предела трение в осях шестерен, использовать для осей и шестерен особо износоустойчивые материалы. Поместить все это сооружение в глубокий подвал, куда не достигают никакие сотрясения почвы. И тогда, может быть, часы год два будут ходить с точностью, вряд ли лучшей точности обычных наручных часов.
Есть и второй путь. По такому пути всегда стремится идти техника. Начинается он с одного неизменного вопроса: можно ли что-либо сделать или придумать так, чтобы и при обычных условиях и обычных материалах устройство работало как требуется? Оказывается, можно. И не нужно помещать механизм часов в какие-то необыкновенные условия, не нужно как-то особенно точно делать детали. Достаточно только одну часть часов сделать точной. Но такую, о которой мы упомянули только вскользь. Эта часть — стабилизирующий элемент. Элемент, который позволяет всегда и при всех обстоятельствах сохранять скорость хода часов. Первым таким элементом, который сумели открыть и применить, был маятник.
Механизм башенных часов Новгородского кремля.
Его применение в часах объясняется одним очень важным свойством. Дело в том, что при небольшом размахе колебания период колебания маятника, то есть время, в течение которого маятник успевает откачнуться из одного крайнего положения в другое и вернуться обратно, зависит только от длины маятника.
От знания свойств маятника до мысли применить его в часах и особенно до открытия способа использования маятника в часах — дистанция огромного размера. Но все-таки люди преодолели ее и нашли способ заставить маятник, качания которого всегда отмеряют точно одинаковые промежутки времени, поворачивать одну из шестерен часов. А так как шестерня эта связана со всеми остальными, то скорость вращения всех шестерен будет неизменной: шестеренка, поворачиваемая маятником, заставит остальные вращаться как положено.
Маятник и спусковое колесо.
Оказывается, ввести маятник в часы с гирями и шестернями не так уж сложно, по крайней мере для тех, кто, как мы с вами, изучает часы через триста лет после их изобретения! Первым же это сделал X. Гюйгенс в 1657 году.
В часах такого типа, о котором вы сейчас читали, потребовалось изменить очень немного. Подвесили маятник и на конце его, противоположном грузу, укрепили штырек.
Этот штырек, его кончик, поместили между зубцами спускового колесика, связанного с остальными шестернями. Форма зубцов колесика и форма кончика штырька выбраны были такими, что при отклонении маятника, скажем вправо, штырек не мешал проворачиваться спусковому колесику, и оно успевало провернуться ровно на один зубец, пока маятник был отклонен вправо. Но повернуться на два зубчика сразу колесику не давал штырек. Когда маятник отклонялся в крайнее левое положение, к штырьку успевал подойти следующий зубец спускового колесика. Он упирался в штырек маятника и давил на него, толкал маятник обратно. Этим восполнялась та часть энергии, запасенная маятником, которая потратилась за время предыдущего колебания. Маятник снова отклонялся вправо под воздействием силы тяжести и толчка спускового колесика и снова пропускал еще один зубец.
Так как период колебания маятника постоянен и так как энергия, расходуемая маятником, восполняется спусковым колесиком, то маятник качается непрерывно и зубчики спускового колесика поворачиваются через строго одинаковые промежутки времени. Теперь уж получилось, что вся точность хода определяется постоянством колебаний маятника. Оно же без особого труда может быть сделано очень точным.