Железо
Желе'зо (латинское Ferrum), Fe, химический элемент VIII группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо-белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54Fe (5,84%), 56Fe (91,68%), 57Fe (2,17%) и 58Fe (0,31%).
Историческая справка. Ж. было известно ещё в доисторические времена, однако широкое применение нашло значительно позже, т. к. в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определённом уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Ж., о чём свидетельствуют его названия на языках древних народов: древнеегипетское «бени-пет» означает «небесное железо»; древнегреческое sideros связывают с латинским sidus (родительный падеж sideris) — звезда, небесное тело. В хеттских текстах 14 в. до н. э. упоминается о Ж. как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, французское fer, итальянское ferro).
Способ получения Ж. из руд был изобретён в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Ж. распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришёл железный век. Гомер (в 23-й песне «Илиады») рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Ж. получали по сыродутному процессу. Железную руду восстанавливали древесным углём в горне (см. Восстановление металлов), устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления — крицу ударами молота отделяли от шлака и из неё выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Ж. науглероживалась, т. е. получался чугун; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское железо» — английское pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причём такой двухстадийный процесс (см. Кричный передел) оказался более выгодным, чем сыродутный. В 12—13 вв. кричный способ был уже широко распространён. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь («домницу»), а затем и в доменную печь. В середине 18 в. в Европе начал применяться тигельный процесс получения стали, который был известен на территории Сирии ещё в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в Ж. на поду пламенной отражательной печи (см. Пудлингование). Промышленный переворот 18 — начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Ж. и его сплавах. Однако все существовавшие способы производства Ж. не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.
Распространённость в природе. По содержанию в литосфере (4,65% по массе) Ж. занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Ж. принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений (см. Железные руды). Ж. — металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Ж. накапливается во многих морских и континентальных осадках, образуя осадочные руды.
Важную роль в геохимии Ж. играют окислительно-восстановительные реакции — переход 2-валентного Ж. в 3-валентное и обратно. В биосфере при наличии органических веществ Fe3+ восстанавливается до Fe2+ и легко мигрирует, а при встрече с кислородом воздуха Fe2+ окисляется, образуя скопления гидроокисей 3-валентного Ж. Широко распространённые соединения 3-валентного Ж. имеют красный, жёлтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование — «красно-цветная формация» (красные и бурые суглинки и глины, жёлтые пески и т. д.).
Физические и химические свойства. Значение Ж. в современной технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддаётся прокатке, штамповке и волочению. Способность растворять углерод и др. элементы служит основой для получения разнообразных железных сплавов.
Ж. может существовать в виде двух кристаллических решёток: a- и g- объёмноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910 °С устойчиво a - Fe с ОЦК-решёткой (а = 2,86645
при 20°С). Между 910°С и 1400°С устойчива g-модификация с ГЦК-решёткой (а = 3,64 ). Выше 1400°С вновь образуется ОЦК-решётка d-Fe (а = 2,94 ), устойчивая до температуры плавления (1539°С). a - Fe ферромагнитно вплоть до 769°С (точка Кюри). Модификация g-Fe и d-Fe парамагнитны.Полиморфные превращения Ж. и стали при нагревании и охлаждении открыл в 1868 Д. К. Чернов. Углерод образует с Ж. твёрдые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77
), размещаются в междоузлиях кристаллической решётки металла, состоящей из более крупных атомов (атомный радиус Fe 1,26 ). Твёрдый раствор углерода в g-Fe наз. аустенитом, а в (a-Fe— ферритом. Насыщенный твёрдый раствор углерода в g- Fe содержит 2,0% С по массе при 1130°С; a-Fe растворяет всего 0,02— 0,04%С при 723°С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит — пересыщенный твёрдый раствор углерода в a- Fe, очень твёрдый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твёрдости и пластичности (см. Железо - углеродистые сплавы. Термическая обработка металлов).Физические свойства Ж. зависят от его чистоты. В промышленных железных материалах Ж., как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает т. н. красноломкость, фосфор (даже 10-20% Р) — хладноломкость; углерод и азот уменьшают пластичность, а водород увеличивает хрупкость Ж. (т. н. водородная хрупкость). Снижение содержания примесей до 10-7—10-9% приводит к существенным изменениям свойств металла, в частности к повышению пластичности.