В спектрах Солнца и других звезд обнаружены спектральные линии 67 химических элементов, найденных ранее в породах Земли. Более того, элемент технеций, полученный в земных условиях только искусственным путем и до сих пор не обнаруженный в земной коре в сколь-нибудь заметных количествах, несколько лет назад был зафиксирован в спектре Солнца и некоторых красных гигантов. Этот факт впервые показал, что химические элементы могут существовать в одних космических телах и отсутствовать в других.
Большинство звезд в основном состоит из водорода. Его линии наблюдались в спектре Солнца еще в 1802 г. У. Волластоном, расшифрованы они были значительно позднее Г. Кирхгофом. В 1876 г. А. Хеггинсон впервые сфотографировал линии водорода в спектре атмосферы Веги. Сейчас известно около 2000 звезд с яркими линиями водорода в спектре. Большинство из них принадлежит к классу В, хотя некоторые относятся к классу О и А. Второе местр по распространенности занимает гелий, сравнительно много в звездах кальция и железа.
Для решения вопроса о происхождении химических элементов очень важно, что звезды и другие космические объекты сильно отличаются по содержанию в них различных элементов. Большинство звезд нашей Галактики имеют атмосферы с явным преобладанием водорода. Остальные элементы, кроме гелия, содержатся в них в очень малых количествах. Об этом свидетельствуют данные табл. 4, в которой приведено содержание некоторых элементов в атмосфере наиболее хорошо изученных звезд — τ Скорпиона и γ Пегаса, а также в атмосфере Солнца.
Таблица 4
Содержание элементов в некоторых космических объектах
(содержание атомов кислорода принято за единицу)1
Однако не все звезды имеют аналогичный состав. Замечательные аномалии в этом отношении представляют собой редкие гелиевые звезды. Недавно советский астроном А. А. Боярчук обнаружил восемь таких звезд. В среднем у них содержание водорода, гелия и Железа относится как 100: 10 000: 1. У одной из них водород не обнаружен вообще. Отсутствует он также в атмосферах некоторых белых карликов; бедны водородом также атмосферы звезды ν Стрельца, HD 30353, переменной Северной Короны и других сходных с ней углеродных звезд (звезды с большим содержанием углерода типа Вольфа-Райе).
Рис. 18. Сравнительная характеристика химического состава атмосферы звезды Новая Геркулеса 1934 (1) и среднего состава звездных атмосфер (2).
В атмосферах Сверхновых звезд водород также менее распространен, чем в обычных звездах. С этой точки зрения безусловный интерес представляют недавно полученные Мустелем и Боярчуком данные о химическом составе атмосферы звезды Новая Геркулеса 1934. Если сравнить ее состав со средним составом звезд (рис. 18), то можно увидеть, что в атмосфере данной звезды сравнительно мало водорода, но зато преобладают атомы углерода, азота и кислорода.
Интересны молодые звезды — красные гиганты типа Ва II, возраст которых равен около 107 лет. Их атмосферы обладают аномальным составом. С помощью 100-дюймового телескопа недавно определили распространенность 33 элементов в атмосфере звезды типа НР46407. Установлено, что содержание сравнительно легких элементов не отличается от содержания их в атмосфере Солнца. Распространенность же большинства элементов тяжелее стронция значительно выше, чем в солнечной атмосфере. Например, распространенность молибдена в три раза, а празеодима даже в 28 раз больше.
По распространенности более тяжелых, чем гелий, элементов все известные в настоящее время звезды нашей Галактики можно подразделить на пять основных категорий с различным возрастом. В сферической составляющей Галактики преобладают звезды с содержанием элементов тяжелее гелия около 0,3 вес. %, причем это число очень сильно меняется для различных звезд. Это самые старые звезды в нашей Галактике. Возраст их исчисляется от 6 до 6,5 млрд. лет. Другая группа звезд, имеющих возраст от 5 до 6 млрд, лет, содержит около 1 вес. % тяжелых элементов; звезды с возрастом от 3 до 5 млрд, лет — 2 вес. %. Звезды описанных трех групп составляют 90 % массы Галактики и наиболее распространены во Вселенной.
Звезды с возрастом от 1 до 3 млрд, лет, сконцентрированные в плоской составляющей нашей Галактики, содержат до 3 вес. % элементов тяжелее гелия, и, наконец, сравнительно молодые звезды — 4 вес. %. Они имеют возраст до 1 млрд, лет и находятся в спиральных рукавах плоской составляющей Галактики, в которых обычно концентрируется значительное количество межзвездного газа и пыли.
Следовательно, содержание элементов, более тяжелых, чем гелий, в атмосферах звезд уменьшается с увеличением возраста звезды. Кроме того, оно связано с расположением звезды в той или иной части Галактики. В звездах сферической составляющей, имеющих большой возраст, содержание тяжелых элементов очень мало. И наоборот, в плоской составляющей и тем более в спиральных рукавах, т. е. там, где по современным представлениям происходит образование новых звезд, содержание тяжелых элементов максимально. Эти факты, как мы увидим дальше, имеют принципиально важное значение для познания процессов образования и эволюции химических элементов.
6. Межзвездная среда
В середине прошлого столетия русский астроном В. Я. Струве открыл явление межзвездного поглощения света, которое показало, что пространство между звездами не пустое, а заполнено пылью и газом. Пыль состоит из твердых частиц размером в несколько десятитысячных долей миллиметра. Плотность космической пыли очень мала и составляет в среднем 10¯26 г/см3. Пыль сосредоточена в плоской составляющей нашей Галактики и в основном в ее спиральных рукавах; то же самое можно сказать и о других спиральных галактиках. Слой скопления пыли относительно тонок, его толщина равна около 200 парсеков. Однако пыль распространена в этом слое не равномерно, а образует облака размером до 5 парсеков. Среднее число таких облаков в спиральных ветвях равно примерно восьми на 1000 парсеков.
Более плотные и протяженные облака межзвездной пыли образуют темные туманности. В темных туманностях плотность пыли может в 100 раз превышать среднюю плотность межзвездной среды. Полное количество космической пыли в таких туманностях, например в созвездиях Тельца и Змееносца, в десятки раз превышает массу Солнца. Эти туманности в очень сильной степени ослабляют свет, идущий от звезд, которые за ними расположены. В плоскости нашей Галактики находится около 500 000 пылевых туманностей.
В настоящее время нет еще определенных сведений о химическом составе межзвездной пыли. Высказываются соображения о том, что пылинки появляются при конденсации молекул межзвездного вещества, подобно тому как из газообразных продуктов горения угля образуются твердые частицы дыма. В связи с тем что в межзвездных условиях существуют в основном молекулы типа Н2О, ΝΗ3 и СН4, межзвездная пыль может-состоять из конденсатов этих молекул, к которым могут прилипать ионы или атомы любых химических элементов и их соединений. В межзвездной среде существует, по-видимому, равновесие между процессами, роста и разрушения пылинок; поэтому размеры частичек кажутся почти одинаковыми в различных местах. Галактики.
Наряду с пылью в межзвездной среде имеется и газ, количество которого примерно в 200 раз больше, чем пыли. В целом на межзвездный газ нашей Галактики приходится не менее 2 % ее массы; в других галактиках, например в туманности Андромеды, — около 1 %. Межзвездный газ, так же как и пыль, образует облака, размеры которых в среднем составляют около 30 световых лет. Такие облака движутся в Галактике в различных направлениях со средней скоростью примерно 10 км/сек. Средняя плотность облаков равна 10 атомам или ионам водорода на 1 см3, плотность же газа между облаками в 100 раз меньше. Облака занимают около 5 % объема Галактики. Более плотные облака межзвездного газа образуют газовые туманности.