На рис. 36 изображен эволюционный путь Солнца вдоль главной последовательности от состояния голубой горячей гигантской звезды. Он происходил по направлению вправо вниз в сторону меньшей светимости.

Для звезд типа Солнца эволюционный процесс протекает крайне медленно. В таком состоянии, в каком оно находится сейчас, Солнце пребывает уже около 3 млрд. лет. За это время оно потеряло всего только пятитысячную часть своей массы. Следовательно, разнообразие звезд главной последовательности можно объяснить тем, что они находятся на различных стадиях протекания процессов синтеза гелия из ядер водорода.

Когда в центре звезды водород полностью превращается в гелий, то она претерпевает резкие изменения в своей структуре и переходит из гомогенной в гетерогенную.

Схематически новое состояние звезды изображено на рис. 37. Такая звезда состоит из гелиевого ядра и водородной оболочки. Ядерные реакции протекают только в тонком слое вблизи выгоревшего ядра Резко изменяется и химический состав звезды: в центре находится преимущественно гелий, далее смесь гелия и водорода и, наконец, чистый водород. Такие звезды называются гетерогенными.

Образование химических элементов в космических телах i_068.png

Рис. 36. Диаграмма «светимость — температура». Кружком обозначено положение Солнца в настоящее время. Стрелкой указан путь эволюции Солнца.

Интересна дальнейшая судьба таких звезд. Детальные расчеты с применением электронных вычислительных машин показали весьма интересные результаты. Оказалось, что в ходе дальнейшей эволюции звезды ее ядро должно сжиматься, уплотняться, а оболочка расширяться. Таким образом радиус звезды резко увеличивается, а величина ядра уменьшается. И звезда, при условии, что ее масса больше чем 1,5 соленной массы, превращается в красный гигант и покидает главную последовательность.

Другие звезды с меньшей массой претерпевают иные превращения. Когда в их центре заканчивается процесс выгорания водорода, ядро начинает сжиматься, что сопровождается постепенным разогреванием всей массы звезды.

Образование химических элементов в космических телах i_069.png

Рис. 37. Схема строения красного гиганта.

Это, как мы указывали выше, приводит к увеличению скорости углеродно-азотного цикла, который протекает в промежуточном слое звезды. Из рис. 35 (кривая 2) видно, что тепловыделение в этом центре очень быстро растет с увеличением температуры. Это обстоятельство и может явиться причиной теплового взрыва оболочки звезды, который мы, по-видимому, и наблюдаем при вспышках Новых звезд. В связи с тем, что в углеродно-азотном цикле имеется два процесса β+ — распада с периодами полураспада 10 мин для Ν13 и 115 сек для О15, которые, как мы знаем, остаются постоянными при любых температурах и давлениях, скорость цикла лимитируется именно этими процессами. Поэтому быстрое ускорение процессов превращения водорода наружного слоя ядра звезды в гелий прекращается очень скоро после начала взрыва, когда все ядра С12, захватив протон, должны превращаться в ядро С13 по цепочке

Образование химических элементов в космических телах i_070.png

Это положение в общих чертах соответствует явлениям, наблюдаемым при вспышках Новых звезд, и объясняет аномальный химический состав, наблюдаемый, например, у Новой Геркулеса 1934 (см. рис. 18).

Так как при вспышке только небольшая доля водорода успевает превратиться в гелий, то химический состав звезды в процессе взрыва в общем изменяется мало. Это приводит к тому, что подобные взрывы могут повторяться, что и обнаружено для ряда Новых звезд. Правда, звезды, претерпевшие вспышки, должны иметь аномально высокое отношение С13 к С12. Действительно, наблюдаются звезды, в которых оно достигает единицы. Так как углеродно-азотный цикл преобладает для бело-голубых звезд плоской составляющей нашей Галактики, то становится понятным, почему вспышки Новых звезд обнаружены именно в в ней и почти никогда не наблюдаются в сферической составляющей, в которой бело-голубые звезды отсутствуют.

б) Слияние ядер гелия

В связи с тем что в ядрах образовавшихся красных гигантов, состоящих из гелия, не происходят ядерные реакции, ядра таких звезд претерпевают дальнейшее гравитационное сжатие, за счет которого увеличиваются температура до 100 млн. град и плотность до нескольких сотен тысяч граммов на кубический сантиметр. В этих условиях и начинается новый термоядерный процесс — слияние ядер гелия, который так же, как и термоядерный процесс синтеза гелия, не осуществлен еще в лабораторных условиях на Земле. Происходит образование ядер С12 через промежуточную стадию, которая может быть записана следующим образом:

Не4 + Не4 + Е (95 кэв) = Be8 + γ,

затем идет процесс последующего присоединения ядра гелия с выделением большого количества энергии

Be8 + Не4 = С12 + γ + 7,4 Мэе.

Время жизни ядра Be8 чрезвычайно мало и составляет 1(Н7 сек; оно распадается на две альфа-частицы. Но при температурах порядка 150 млн. град и высокой плотности его количество, по-видимому, достаточно для образования ядер С12.

Возможен и непосредственный синтез С12 из ядер гелия по реакции

Образование химических элементов в космических телах i_071.png

Эта теоретически предсказанная реакция была недавно доказана экспериментально по обратному процессу— процессу распада возбужденного ядра С12 на три альфа-частицы. Рассчитано время этой реакции. Так, при температуре примерно 1 · 108 град и плотности около 104 г/см3 оно составляет 105 —107 лет. Захват ядер гелия вновь образующимся ядром С12 может идти и дальше вплоть до образования ядер Mg24. Этот процесс протекает следующим образом:

Образование химических элементов в космических телах i_072.png

Как правило, после образования ядра Mg24 процесс последовательного присоединения ядер гелия приостанавливается, поскольку с увеличением порядкового номера ядер резко возрастает высота потенциального барьера присоединения альфа-частиц. Например, для ядер с Z = 10 высота барьера равна около 1 Мэв, для ядер с Z = 20 она составляет уже 4 Мэв. В красных гигантах ядра гелия имеют энергию всего лишь около 100 кэв. Поэтому даже при наличии максвелловского распределения вероятность их захвата ядрами с Z>10 резко уменьшается, и вероятность образования более тяжелых ядер сильно снижается, (α, γ) — Реакцию при малых энергиях альфа-частиц в лабораторных условиях осуществить пока не удалось. Теоретическими расчетами установлено, что вероятность образования ядер в рассматриваемом процессе на 1 г материала звезды в десять раз меньше вероятности образования ядер гелия из ядер водорода. Предполагается, что имеющегося в красных гигантах гелия хватает на 107— 108 лет.

По мере израсходования гелия в центре ядра звезды последнее сжимается, при этом вновь возрастает температура, которая может достигать миллиардов градусов. При таких условиях возможен процесс слияния двух ядер С12 с образованием изотопов Mg24, Ne20 или Na23 по реакциям:

12 = Mg24,


Перейти на страницу:
Изменить размер шрифта: