Во-вторых, изучение радиоактивных цепочек привело к открытию явления изотопии. Было замечено, что многие радиоактивные элементы, составляющие определенные звенья в цепочке распада, обладают одинаковыми химическими свойствами и их невозможно разделить никакими химическими операциями. Например, при распаде полония и таллия (см. рис. 10) образуются элементы, подобные по своим свойствам свинцу. При распаде радона и висмута образуются «два» полония. Видно, что эти «элементы» различаются только атомными весами. Так, свинец имеет три вида атомов с атомными весами 214, 210 и 206; висмут — два вида с атомными весами 214 и 210. Содди в 1911 г. такие разновидности атомов одного химического элемента назвал изотопами, что означает «занимающие одно место» в периодической системе элементов Д. И. Менделеева.
Следует вспомнить, что А. М. Бутлеров еще в начале 80-х годов XIX в. сделал предположение о возможности существования различных видоизменений химических элементов, обладающих различными атомными весами. Как видно, предвидение Бутлерова оправдалось и не только на примере радиоактивных элементов.
Рис. 10. Схема радиоактивного семейства U238.
В 1913 г. Дж. Томсон на примере неона получил первые сведения о существовании изотопов среди нерадиоактивных элементов. С помощью маес-спектрометрического анализа удалось найти изотопы многих других природных элементов, например магния, кальция и других. В настоящее время изучен. изотопный состав всех известных природных элементов. Оказывается, что только 22 элемента: фтор, натрий, фосфор, ванадий, марганец, празеодим, золото, висмут и другие — состоят из одного вида изотопов. Все они являются нечетными элементами, т. е. имеют нечетный порядковый номер. Остальные элементы, в основном четные, имеют несколько стабильных изотопов. Особенно много изотопов у олова и ксенона, которые представляют собой смеси из 9 стабильных изотопов; по 8 изотопов имеют теллур и кадмий. Многие тяжелые элементы имеют по семь изотопов. К ним относятся ртуть, осмий, иттербий, диспрозий, гадолиний, самарий, неодим, и элементы средней части периодической системы Д. И. Менделеева — рутений и молибден. Из сравнительно легких элементов наибольшее число изотопов имеет кальций (пять изотопов). Сейчас известно 225 стабильных изотопов. На диаграмме атомных ядер (рис. 11) они закрашены в черный цвет. Видно, что в ядрах стабильных изотопов легких элементов число протонов примерно равно числу нейтронов. Начиная с кальция (Ζ>20), число нейтронов у стабильных изотопов резко возрастает, и для изотопов самых тяжелых элементов отношение числа нейтронов и протонов составляет 1,6. Наличие в ядрах ядерных сил между нуклонами и электростатических сил отталкивания между протонами приводит к тому, что стабильными могут быть только те изотопы, у которых отношения между числами протонов и нейтронов в ядрах лежат в определенных пределах, изменяющихся по мере увеличения порядкового номера элемента. Из диаграммы видно, что все стабильные изотопы занимают сравнительно узкую область. Исключение составляют изотопы таких элементов, как кальций, цирконий, олово и другие, которые имеют замкнутые протонные или нейтронные оболочки и поэтому обладают повышенной устойчивостью.
Зависимость устойчивости атомных ядер от соотношения в них протонов и нейтронов можно подтвердить следующими фактами. Элементы, содержащие нечетное число протонов, имеют один или в крайнем случае Два стабильных изотопа. К ним относятся самые легкие элементы, вплоть до азота. Все стабильные изототопы элементов тяжелее азота с нечетным Z обладают только нечетными массовыми числами. Отсюда следует, что нечетное число протонов образует устойчивые ядра лишь в соединении с четным числом нейтронов. Элементы с четным Z имеют стабильные изотопы как c четным, так и с нечетным числом нейтронов, однако у них отсутствуют стабильные изотопы с такими массовыми числами, с какими встречаются изотопы у соседних элементов с нечетным Z. Два изотопа с одинаковым массовым числом не могут быть оба стабильными, если их Z отличаются на единицу. Вследствие этих закономерностей в природе отсутствуют стабильные изотопы элементов с Z, равным 43 и 61, а все изотопы элементов с Z ≥ 84 — радиоактивны.
В настоящее время, благодаря усовершенствованию техники измерения очень слабой радиоактивности в природных объектах, удалось обнаружить, что природные изотопы многих элементов, ранее считавшиеся стабильными, на самом деле проявляют радиоактивные свойства. В периодической системе химических элементов Д. И. Менделеева эти элементы обозначены красным цветом. Сейчас известно 50 долгоживущих радиоактивных изотопов, к которым относятся такие изотопы, как К40, U235 и U238, играющие большую роль в истории нашей планеты. Общее число известных природных радиоактивных изотопов достигает 90; оно увеличивается с каждым годом, и в недалеком будущем, по-видимому, будут найдены радиоактивные изотопы многих элементов.
Периоды полураспада природных радиоактивных изотопов различны и составляют от нескольких долей секунды до многих триллионов лет. Самым долгоживущим изотопом является Те130, период полураспада (Т) которого равен около 1000 триллионов лет (1021 лет); изотопы Са48, Mo92, Nd150, Dy136 и Bi209 имеют T≈ 1018 лет.
Благодаря бурному развитию ускорительной техники и постройке различных ядерных реакторов, в настоящее время получено и изучено большое число искусственных радиоактивных изотопов всех элементов периодической системы Д. И. Менделеева. Число известных радиоактивных изотопов превышает 1200. Все они нанесены на диаграмму атомных ядер, по которой можно судить о типе радиоактивного распада. Последний определяется величиной соотношения нейтронов и протонов в ядрах.
Наибольшее число радиоактивных изотопов распадается путем β—-распада. В его основе лежит превращение нейтрона в протон. β—-Распад характерен в основном для изотопов с избытком нейтронов. Такие изотопы являются наиболее тяжелыми изотопами всех элементов. Например, элемент лантан (Ζ = 57) имеет стабильный изотоп с А = 139; β—-распадом обладают изотопы с A от 140 до 144.
β―-Активные изотопы составляют около 45 % суммы всех радиоактивных изотопов.
Значительно распространен позитронный (β+) — распад. Он часто сопровождается другим видом распада — K-захватом. Сущность его состоит в том, что электрон, находящийся на одной из ближайших к ядру оболочек, чаще всего на K-оболочке, захватывается ядром. При K-захвате, так же как и при позитронном распаде, один из протонов ядра превращается в нейтрон р + е- → 0п1. Около 25 % изотопов распадаются таким путем. Позитронный распад и K-захват встречаются только у изотопов с недостатком нейтронов, которые являются самыми легкими изотопами данного элемента. Так, у лантана к ним относятся изотопы со значениями А от 131 до 138.
Более одной шестой части радиоактивных ядер обладают способностью испускать альфа-частицы. В основном это изотопы самых тяжелых элементов.
Среди радиоактивных изотопов обнаружены изомеры — два радиоактивных изотопа с различными периодами распада, но с одинаковым массовым числом. Здесь мы встречаемся уже с разновидностью изотопов, подобно тому как изотопы являются разновидностью атома. К настоящему времени обнаружено уже более двухсот изомерных пар. Это явление значительно расширяет наше представление об изотопах, и не исключено, что все радиоактивные изотопы существуют в виде двух или даже более изомерных состояний.
Следует указать еще на один вид распада ядер — спонтанное, т. е. самопроизвольное деление, открытое в 1940 г. советскими физиками Г. Н. Флеровым и К. А. Петржаком у ядер U238. Этот процесс подобен искусственному делению ядер и характерен только для изотопов самых тяжелых элементов. Периоды полураспада спонтанного деления изотопов меняются в самых широких пределах: от 1021 лет для Th232 до 30 мин для Md256 — изотопа искусственного элемента с Z = 101, названного менделевием. Всего известно 36 изотопов, для которых спонтанное деление — основной вид распада.