Открытия средневековья и Возрождения во многих отраслях науки подготовили тот прорыв физики вперед, который оказался связан прежде всего с исследованием проблем тяготения.
Подступы. Галилей и Кеплер
Чтобы появились законы, надо было найти четкие связи между явлениями и выразить их в математических формулах.
Тяготение равно повелевает падением тел, находящихся на Земле, и движением небесных тел. Чтобы найти общий, единый «для неба и земли» закон всемирного тяготения, надо было сначала выяснить — по отдельности— казавшиеся не связанными между собой закономерности падения камня и движения светил.
Выполнение первой из этих задач выпало на долю Галилео Галилея.
Для истории исследования тяготения важны прежде всего не астрономические наблюдения и открытия великого астронома, хотя именно они составили его славу, не горы на Луне, не спутники Юпитера и многое другое, но его умение ставить опыты на Земле, вырывая у природы истину.
Так писал Евгений Евтушенко в стихотворении «Карьера». Поэт, в общем, точен. После Коперника не так уж мало ученых разбиралось в том, что вокруг чего вертится. Галилей был достаточно смел, чтобы вести пропаганду идей Коперника до той самой минуты, когда перед ним замаячил костер. Он отрекся, но после стольких лет борьбы, что само отречение — с точки зрения церкви— уже запоздало. Народная память задним числом оправдала борца, вложив ему в уста знаменитое: «А все-таки она вертится!»
Нисколько не умаляя значения Галилея в истории науки, мы вправе посчитать защиту и пропаганду гелиоцентрической системы при всей важности этого дела только мелкой деталью его биографии. Да и важна ока оказалась постольку, поскольку за популяризатором стоял его авторитет как ученого и талант как писателя. Как Ньютон велик и без анекдота про пресловутое яблоко, так Галилей велик и без преследований со стороны церкви.
Для темы этой книги всего важнее три направления в работах Галилея.
Первое связано с изучением падения тел и движения маятников.
Второе — с развитием принципа относительности (впрочем, о принципе относительности и вкладе в эту идею Галилея лучше поговорить позже, когда речь пойдет о научных событиях, в ходе которых этот принцип стал одной из основ теории тяготения).
На третьем направлении был открыт закон инерции, закон, по которому тело сохраняет состояние покоя или равномерного движения, пока не вмешается внешняя сила. Правда, это формулировка более поздняя, ньютоновская, но предтечей Ньютона был Галилей. Вот как сам великий итальянец изложил этот закон в конце своей жизни: «Степень скорости, обнаруживаемая телом, ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними».
Два самых ярких с внешней стороны эпизода научной жизни Галилея (если оставить в стороне его преследования церковью) связаны с двумя зданиями города Пизы. С высоты знаменитой Пизанской башни он бросал «пробные тела» (выражаясь языком современной физики) разного состава и массы и обнаружил, что все они падают с почти одинаковой скоростью; небольшая же разница зависит от сопротивления воздуха, которое, как мы знаем, сам Аристотель советовал принимать во внимание. Результат этих опытов известен нам всем по школьным урокам физики: все тела падают равномерно-ускоренно, с одним и тем же (если исключить влияние среды) ускорением.
С законами, управляющими движением маятника, мы все тоже познакомились в школе; кроме того, впереди у нас специальная глава об определении силы тяжести с помощью маятников.
Поэтому здесь уместно ограничиться цитатой из рассказа Вивиани, ученика и первого биографа Галилея.
«В 1583 г., имея около двадцати лет от роду, Галилей находился в Пизе, где, следуя совету отца, изучал философию и медицину. Однажды, находясь в соборе этого города, он, со свойственной ему любознательностью и смекалкой, решил наблюдать за движением люстры, подвешенной к самому верху, не окажется ли продолжительность ее размахов, как вдоль больших дуг, так и вдоль средних и малых, одинаковой; ибо ему казалось, что продолжительность прохождения большой дуги может сократиться за счет большей скорости… И пока люстра размеренно двигалась, он сделал грубую прикидку— его обычное выражение — того, как происходит ее движение взад и вперед, с помощью биений собственного пульса…»
Эта «грубая прикидка» дала ученым один из самых совершенных приборов для определения времени, силы тяжести и многого другого.
Наблюдательность юноши была поразительна: все, что попадало в поле его зрения, подлежало исследованию, все равно, находилось оно на земле или на небе.
Важнейшей из своих заслуг перед наукой Галилей считал создание учения о падении тел. Об этом говорит он сам устами героев своей написанной в форме диалогов книги «Беседы и математические доказательства, касающиеся двух новых отраслей науки»: «Я твердо верю, что как немногие свойства круга, установленные в третьей книге „Элементов“ Евклида (говоря для примера), послужили исходным пунктом для обнаружения множества других, более скрытых соотношений, так и то, что изложено и доказано в настоящем кратком трактате, попав в руки других пытливых исследователей, укажет им путь ко многим удивительным открытиям; мне думается, что так оно и будет, так как этот предмет своей значительностью превосходит все другие явления природы».
С одной стороны, Галилей здесь сам себя сравнивает с Евклидом, с другой — возлагает надежды на будущих пытливых исследователей; все это с уверенным достоинством. Но обратим внимание: он уверенно объявляет падение тел самым значительным из явлений природы. Однако оговаривает в этой книге, что полагает неуместным или невозможным вдаваться в исследование проблемы, какая причина вызывает падение.
В поисках причины тяготения Галилей не пошел намного дальше Аристотеля. Только-только рождавшаяся опытная наука часто брала на веру то, чего проверить еще не могла.
«Небесную часть» работы по созданию фундамента будущего великого закона выполнил прежде всего Иоганн Кеплер.
Причем в данном случае на примере Галилея отлично видна правота пословицы «На всякого мудреца довольно простоты». Галилей и Кеплер были большими друзьями и высоко пенили, как правило, научные достижения друг друга. Переписка этих двух предтеч Ньютона— один из важнейших документальных источников об их эпохе. Но вот Кеплер делает самое великое из своих открытий: приходит к выводу, что планеты движутся вокруг Солнца не по кругам, а по эллипсам, и формулирует три закона такого движения планет, три закона, которые получили имя Кеплера и обессмертили его.
Эти законы были проявлением в конечном счете закона всемирного тяготения; до сих пор законы Кеплера в обобщенной и уточненной форме применяются в небесной механике, когда исследуются орбиты двух гравитационно связанных небесных тел. Словом, это было действительно экстраординарное открытие; даже сама формулировка законов Кеплера оказала в дальнейшем влияние на формулировку Ньютоном его законов.
Кеплеровское открытие отнюдь не осталось незамеченным. Одни ученые восхищались, другие оспаривали. И только один крупный астроном молчал. Это был сам Галилей. Между тем Кеплер сделал свои выводы и предал их гласности как раз в то время, когда именно астрономия была главным занятием Галилея. Он не мог не знать законов Кеплера. Но ни в одном его напечатанном произведении, ни в одной рукописи, оставшейся неопубликованной, ни в одном письме великий итальянец словом не обмолвился об эпохальном открытии своего современника, коллеги и друга. Он был слишком предан кругу как идеальной форме; обращение круга в эллипс было для Галилея тем же, чем для его собственных идейных противников обращение Земли из центра мира в обыкновенную планету. Он не мог принять это. Но от идейных противников Галилея самого его отличала внутренняя честность. Принять не мог и не мог опровергнуть, а потому молчал. Не считал себя вправе с высоты общих правил обрушиваться на конкретные исследования. Будто и не было для него величайшего астрономического события эпохи — из тех, что не связаны с работами самого Галилея[2].
2
Можно добавить, что планетные орбиты — эллипсы — довольно близки к кругу. Эта близость формы и позволяла, вероятно, Галилею всю жизнь сопротивляться идее Кеплера. Однако идея ведь была доказана, Кеплер не гипотезу выдвинул, а сделал открытие!