doc2fb_image_02000005.jpg

Рис. 3. Гипсографическая кривая поверхности земной коры по Г. Дитриху.

Земная кора. Это верхний слой твердой Земли, отделенный от нижележащих слоев так называемой поверхностью Мохоровичича, при переходе через которую сверху вниз меняется химический состав вещества и происходит скачкообразное увеличение скорости распространения упругих волн (волн Р - от 6.8-7.3, в некоторых регионах от 7.4-7.7 до 8.1-8.4 км/сек., а волн S - от 3.7-4.1 до 4.4-4.7 км/сек.). Если принять среднюю мощность коры равной 33 км, а среднюю плотность вещества в ней - 2.8 г/см3, то масса коры получится равной 4.7·10 7 триллионов т - около 0.8% массы всей Земли.

doc2fb_image_02000006.jpg

Рис. 4. Главные тектонические структуры современной Земли. Материки: 1 - докембрийские платформы; 2 - щиты; 3 - древние ядра платформ; 4 - первичные дуги (поясы Альпийского орогонеза, зоны сжатия); 5 - офиолитовые зоны. Океаны: 6 - контуры срединно-океанических хребтов; 7 - рифтовые долины (зоны растяжения); 8 - поперечные разломы; 9 - глубоководные желобы.

Кора состоит из легкоплавких силикатов с преобладанием алюминиевых («сиаль»). Концентрации основных химических элементов в земной коре, по А. П. Виноградову, показаны на рис. 5. Больше всего в коре кислорода (49.13%), кремния (26%) и алюминия (7.45%). Наиболее распространенный элемент - кислород - содержится в коре, конечно, не в свободном виде, а в форме окислов: в коре в среднем 58% SiO2, 15% Аl2O3, 8% FeO и Fе2О3, 6% СаО, по 4% MgO и Na2O, 2.5% К2О и т. д. Специально следует подчеркнуть содержание главных долгоживущих радиоактивных изотопов - урана (U238 и U235), тория (Th232) и калия (К40). Их концентрации в разных породах коры различны, но отношения (Th/U ~ 4 и K/U ~ 104) приблизительно постоянны; больше всего их в гранитах (концентрация урана достигает 4.75·10-6), вдвое меньше в осадочных породах (2.5·10-6), еще меньше в базальтах (6·10-7) и меньше всего в перидотитах (1.6·10-8) и дунитах (1·10-9).

doc2fb_image_02000007.jpg

Рис. 5. Химический состав земной коры по А. П. Виноградову.

Приводившиеся цифры относились к земной коре в целом. Однако континентальная кора резко отличается от океанической - ее мощность значительно больше (25-75 км против 6-8 км); она содержит так называемый гранитно-метаморфический слой, отсутствующий в океанической коре; отличается и по некоторым формам рельефа. Общее представление о структуре земной коры дает ее экваториальный разрез, приводимый на рис. 6.

doc2fb_image_02000008.jpg

Рис. 6. Экваториальный разрез земной коры по Р. М. Деменицкой. 1 - осадки; 2 - граниты; 3 - базальты; 4 - мантия.

Опишем типичный разрез континентальной коры. Ее верхний слой средней мощностью 3 км образуют осадочные породы плотностью 2.5 г/см3, в которых скорость распространения волн Р растет с глубиной от 2 до 5 км/сек. Далее идет гранитно-метаморфический слой средней мощностью 17 км с плотностями 2.6-2.8 г/см3 и скоростями ср = 5.5 - 6.5 км/сек, (по некоторым данным, он отделяется от нижележащего слоя заметной границей, которую называют поверхностью Конрада); в этом слое сосредоточена основная радиоактивность земной коры. Наконец, ниже находится так называемый базальтовый слой средней мощностью 15 км с плотностью 2.9-3.3 г/см3 и скоростями Ср = 6.4-7.3 км/сек, (а в некоторых регионах - с пятикилометровым гранулит-эклогитовым нижним подслоем - со скоростями ср=7.4-7.7 км/сек.). Совсем иначе выглядит типичный разрез океанической коры. Под слоем рыхлых осадков средней мощностью 0.7 км со скоростями ср=1.5-1.8 км/сек. в ней выделяют так называемый второй слой средней мощностью 1.7 км со скоростями Ср = 2.1-5.5 км/сек., состоящий, по-видимому, преимущественно из толеитовых базальтов (50.1% SiO2, 16.7% Аl2O3, 11.6% СаО, 8.8% FeO и Fe2O3, 7.8% MgO, 2.8% Na2O, 0.19% К2O, 1.7·10-7 Th, 9*10-8 U; гораздо менее распространены в коре щелочные базальты вулканических островов, содержащие немного меньше SiO2, СаО и MgO, но больше Fe и Na и много больше К, Th и U, и андезиты - лавы островных дуг западной периферии Тихого океана, содержащие заметно больше SiO2, Na, К, Th и U и меньше Са, Fe и Mg, происхождение которых, по-видимому, связано со вторичной переплавкой сиаля океанической коры). Ниже находится третий слой средней мощностью около 5 км со скоростями Ср ≈ 6.7 км/сек., состоящий, по-видимому, в основном из серпентинитов, MgeSi4O10(OH)8, образующихся при гидратации (реакции с водой) горячих мантийных гипербазитов.

Отметим два типа форм рельефа, специфических для поверхности океанической коры.

Это, во-первых, уже упоминавшиеся срединно-океанические хребты (рис. 4 свидетельствует, что они являются срединными в Атлантическом и Индийском океанах, в Тихом же океане соответствующий хребет проходит по южной и восточной периферии). Эти хребты сложены толеитовыми базальтами, на их осях имеются рифтовые долины - провалы с крутыми стенками, на дне которых поверхность Мохоровичича, выклинивающаяся к осям хребтов, выходит на поверхность дна. В отличие от горных хребтов геосинклинальных подвижных поясов суши, являющихся зонами бокового сжатия земной коры, срединно-океаническиё хребты являются зонами ее растяжения. Во-вторых, для океанов специфичны узкие глубоководные желобы, также показанные на рис. 4. Их ширина исчисляется всего десятками километров, а длина - сотнями и даже тысячами километров. Глубины желобов 9-И км являются наибольшими в Мировом океане. Располагаются они на перифериях океанов, в ряде случаев окаймляя с океанской стороны островные дуги. Таковы, например, Курило-Камчатский и Алеутский желобы. Перуано-Чилийский желоб, наоборот, окаймляет непосредственно континент. Над континентальными склонами желобов наблюдаются отрицательные гравитационные аномалии порядка 100-200 мгал; с обеих сторон от них, особенно с континентальной стороны, протягиваются полосы более слабых положительных аномалий.

Литосфера и астеносфера (верхняя мантия). В табл. 2, рассчитанной Р. Аффеном и А. Джессопом (1963 г.), приводятся значения давления р и температуры Т, а также прочности S и температуры плавления ТП гранитов, базальтов и дунитов на разных глубинах в верхнем 400-километровом слое Земли (S - это максимальное касательное напряжение, которое может выдержать материал, не разрушаясь; оно измеряется в тех же единицах, что и давление, здесь - в килобарах, т. е. в тысячах атмосфер). По этим данным, на глубинах в среднем 60-250 км базальты могут быть расплавленными (гранитов же там нет); этот близкий к плавлению или даже содержащий расплавы легкоплавких компонент в твердом скелете тугоплавких компонент ослабленный (т. е. обладающий пониженной прочностью) слой называется астеносферой. Ее существование было обнаружено Б. Гутенбергом по уменьшению в ней скоростей распространения упругих волн (см. рис. 7), так что для них она может служить волноводом. Под континентами она занимает глубины в среднем 120-250 км, под океанами - 60-400 км, а под осями срединно-океанических хребтов подходит к поверхности дна. Вязкость вещества в астеносфере оценивается в 1020 пуаз, она в сотни или даже тысячи раз меньше, чем в вышележащем жестком слое - литосфере.

doc2fb_image_02000009.jpg

Табл. 2. Прочность (S) и температура плавления (Tm) пород в верхних 400 км Земли по Р. Аффену и А. Джессону (1963 г.)

Для более полного понимания состояния вещества на глубинах нужно знать его химический и минералогический состав. Предполагается, что мантия Земли состоит из тугоплавких силикатов с преобладанием магниевых («сима»). А. Рингвуд предложил для вещества мантии минералогическую модель пиролита-смеси трех частей альпийского перидотита (оливин+20% пироксена) и одной части гавайского базальта. В пиролите 45.16% SiO2, 37.47% MgO, 8.04 FeO и 0.46% Fe2O3, 3.54% Al2O3, 3.08% CaO, 0.71% ТiO2, 0.57% Na2O и т. д.

doc2fb_image_0200000A.jpg

Рис. 7. Скорости cp и cs распространения продольных и поперечных сейсмических волн в верхней мантии Земли по Б. Гутенбергу.

Многое о структуре литосферы можно извлечь из данных об очагах землетрясений, Во-первых, очаги большинства землетрясений (72%) находятся в литосфере, из них немного больше половины - в верхних 30 км; землетрясений с очагами на промежуточных глубинах (80-300 км) - 22%, на больших глубинах (350-720 км) - только 6%. Во-вторых, на карте (рис. 8), где нанесены очаги около 29 500 умеренных и сильных землетрясений, зарегистрированных в 1961-1967 гг., видно, что подавляющее большинство очагов находится в узких подвижных поясах - Альпийско-Гималайском, Тихоокеанском и в рифтовых зонах срединно-океанических хребтов, Байкала и Кении, а разделяемые этими подвижными поясами литосферные плиты практически асейсмичны.

doc2fb_image_0200000B.jpg

Рис. 8, а. Очаги сильных землетрясений, зарегистрированных в 1961 - 1967 гг.

doc2fb_image_0200000C.jpg

Рис. 8, б. Очаги умеренных землетрясений, зарегистрированных в 1961 - 1967 гг.

Очаги всех землетрясений в рифтовых зонах срединно-океанических хребтов (и на поперечных им трансформных разломах, см. рис. 4) неглубоки - не глубже 40 км, большинство же очагов имеет глубины 5-10 км. Почти все землетрясения с очагами глубже 100 км происходят вдоль глубоководных желобов, с их континентальной стороны (а также, в порядке исключения, в Памиро-Гиндукушском районе); там же находится большинство действующих вулканов (рис. 9).

doc2fb_image_0200000D.jpg

Рис. 9. Расположение действующих вулканов на земном шаре.

На основании сейсмических и некоторых других данных выделяются прежде всего шесть крупных литосферных плит - Евроазиатская, Африканская, Индоавстралийская, Тихоокеанская, Американская и Антарктическая. Далее, из Евроазиатской выделяют Китайскую, из Африканской - Аравийскую, из Тихоокеанской - плиту Назка. Наконец, некоторые авторы рассматривают в качестве самостоятельных плиты Кокос, Карибскую, Горда, Филиппинскую, Бисмарк, Соломонову, Фиджи, Иранскую, Турецкую, Эллинскую и Адриатическую, а иногда также различают Североамериканскую и Южноамериканскую. Эти плиты показаны на рис. 10.


Перейти на страницу:
Изменить размер шрифта: