Маршрут № 3. снова квантованный мир

Пока вне поля нашего зрения остались события, которые уже с 1927 года повели физику элементарных частиц по новому пути. Электрон оказался и не волной и не частицей (в классическом понимании этих образов), и древний как мир спор стал объектом внимания историков от науки и философов.

Вкратце ход решения двадцатипятивековой дилеммы выглядит следующим образом. Через некоторое время после публикации дебройлевских работ ими заинтересовался австрийский физик-теоретик Э. Шредингер. В серии работ, выполненных в 1925–1927 годах, он довел гипотезу Л. де Бройля до уровня серьезной теории и вполне справедливо назвал ее волновой механикой.

Огромное преимущество такого подхода перед так называемой «старой квантовой механикой» заключалось в построении ясного и предельно общего метода решения любой задачи о поведении микрочастиц. Этот метод был основан на знаменитом уравнении Шредингера для дебройлевских волн. Это уравнение связывало всякое изменение волны во времени с энергией частицы, с которой сопоставлена эта волна. Достаточно было только выяснить вид потенциальной энергии взаимодействия двух или нескольких частиц и ввести эту функцию в уравнение — дальше возникала чисто математическая (лишь в редких случаях простая!) проблема. На основе такого метода практически все задачи, которые с великими трудностями и не менее великим искусством решали создатели старой квантовой механики, в первую очередь Н. Бор и его ученики, становились едва ли не упражнениями для студентов (сейчас они входят в программу III–IV курсов университета!). Но не менее важно и то, что был расчищен путь к задачам, о которых раньше и мечтать не смели.

Отдавая должное замечательным качествам волновой механики, Н. Бор и многие другие физики непрерывно полемизировали с Э. Шредингером по поводу трактовки волновой функции, для определения которой и было написано «всемогущее» уравнение.

Особую остроту этим спорам придавала та позиция, которую твердо занял Э. Шредингер. Он оказался, как говорится, «еще большим католиком, чем сам папа римский» и выдвинул идею, что в природе нет ничего, кроме волн! Это был существенный шаг за рамки исходной дебройлевской гипотезы. Никаких частиц на самом деле нет, утверждал австрийский физик, о них можно говорить лишь приближенно, с точки зрения классической физики, а для волновой механики этот образ совершенно лишен смысла!

Э. Шредингер полагал, что волновая функция описывает реальный волновой процесс в пространстве подобно тому, как формулы напряженности полей описывают электромагнитные волны. Если же концентрация дебройлевских волн в некоторой малой области пространства очень велика, то возникает «нечто», напоминающее частицу в обычном классическом понимании этого слова, своеобразный волновой сгусток, ведущий себя как частица.

Дискуссия по этому поводу затронула практически всех крупнейших физиков того времени, и большинство из них не согласилось с чисто волновой концепцией электрона, считая, что частицы так или иначе должны остаться частицами. Однако сохранять корпускулярные представления стало тоже далеко не простым делом, и решение проблемы было найдено на весьма оригинальном и неожиданном пути.

В 1927 году один из лидеров «квантовой революции», М. Борн, прославившийся рядом глубоких работ в различных разделах теоретической физики, рассматривал задачу о рассеянии электронов с помощью уравнения Шредингера. Получив формальное решение, он приступил к анализу едва ли не самого сложного вопроса: что же скрывается за красивыми математическими выражениями волновой теории? М. Борн старался взглянуть на постановку задачи и на конечный результат глазами экспериментатора. Независимо от того, что теоретики «измыслили» волновое уравнение и стараются ограничить себя только волновыми представлениями, рассуждал он, экспериментаторы всегда говорят о потоке частиц, о регистрации частиц… Может быть, это лишь вопрос удобства тех или иных слов? Может быть, люди, занятые постановкой опытов, просто не склонны к более глубокому постижению законов природы и абстрактному волновому подходу?

Нет, продолжал он, надежда на «близорукость» экспериментаторов ничем не оправдана, скорее наоборот, волновая теория не дает ясного ответа на вопрос, откуда берутся мельчайшие частицы вещества, занимающие чрезвычайно малый объем пространства. Ведь именно с ними приходится иметь дело в реальных опытах! А все слова о том, что вместо всамделишных частиц наблюдаются какие-то концентрированные волновые образования, пока не имеют под собой серьезных теоретических и экспериментальных оснований. Поэтому необходимо найти такую трактовку волновой функции, которая позволила бы, с одной стороны, сохранить естественное представление о частицах, а с другой объяснить своеобразные волновые закономерности в распределениях этих же частиц, получающихся, скажем, при исследовании рассеяния.

Исходя из таких соображений, М. Борн пришел к поразительному заключению. Оказалось, что все становится на свои места, если считать, что волновая функция характеризует вероятность того или иного состояния реальной частицы или совокупности частиц, а вовсе не какую-то реальность типа электромагнитной волны. Точнее говоря, квадрат модуля волновой функции описывает распределение вероятности определенного состояния частицы, например, ее положения в пространстве.

На первый взгляд борновская идея удивительно проста. Представим себе источник частиц, например, тех же электронов, из которого обстреливается некоторая мишень-рассеиватель, состоящая из таких же электронов и атомных ядер. За рассеивателем перпендикулярно к направлению движения пучка электронов расположен экран, реагирующий на попадание частицы слабой вспышкой света, как говорят физики — сцинтилляцией. Если источник начнет работать в одиночном режиме, то есть электроны будут выпускаться по одному, то в разных точках экрана через определенные промежутки времени будут регистрироваться отдельные вспышки, свидетельствующие о попадании отдельных частиц. Если переключить источник на генерацию интенсивного пучка электронов, то на экране появится плотное распределение вспышек. Эта картина напоминает известное распределение света, рассеянного на некотором препятствии. Итак, в первом случае электроны ведут себя как обычные частицы, а во втором демонстрируют типично волновые свойства.

Проведем теперь следующий важный эксперимент, заменив сослуживший свою службу экран специальными чувствительными фотопластинками. На первую пластинку запустим интенсивный пучок электронов — на ней должна образоваться та же волновая картина, которая была видна в аналогичной ситуации и на сцинтиллирующем экране. Сменив пластинку, включим источник в одиночный режим, и пусть установка поработает некоторое время, набирая события.

Если экспозиция была достаточно длительной, то и на второй пластинке постепенно сформируется совершенно такая же картина, как и на первой.

Теперь пора делать некоторые выводы. Во-первых, волновые свойства никак не проявлялись в каждом отдельно взятом электроне. Зато они немедленно сказываются, как только электроны соберутся в большой коллектив, то есть мы наблюдаем волновую картину для распределения большого числа событий-вспышек на сцинтиллирующем экране. Во-вторых, волновая картина не зависит от того, произошли ли все события-вспышки одновременно после запуска на экран интенсивного потока электронов, или накапливались постепенно на фотопластинке при работе источника в одиночном режиме. Как же следует трактовать получившиеся распределения с точки зрения теории?

Прежде всего отметим, что уравнение Шредингера не дает никаких предсказаний о том, в какую конкретную точку попадет электрон. Тут царит чистая случайность — каждый электрон может, испытав взаимодействие с рассеивателем-мишенью, оказаться в любой точке фотопластинки, и, как мы убедимся немного позже, не существует средств, позволяющих сделать его судьбу более определенной. Но при регистрации большого потока частиц оказывается, что одни участки фотопластинки засвечены сильнее, а другие слабее, то есть на первые участки электроны попадают чаще, чем на вторые. Это и приводит в конце концов к наблюдаемому неравномерному распределению, причем интенсивность засветки в каждой точке пластики пропорциональна частоте попадания туда отдельных частиц. Если теперь принять полную интенсивность засветки всего экрана за единицу, то доля вспышек, приходящихся на одну точку, или, как говорят физики, относительная частота попадания, определит нам вероятность того, что любой отдельно выпущенный электрон окажется в конкретной точке экрана.


Перейти на страницу:
Изменить размер шрифта: