Необходим был гений Паскаля и Ферма, чтобы понять, что такого рода задачи допускают вполне определенные решения и что “вероятность” есть величина, доступная измерению. Предположим, что требуется узнать, как велика вероятность вынуть белый шар из урны, содержащей два белых шара и один черный. Всех шаров три, и белых шаров вдвое больше, чем черных. Ясно, что правдоподобнее предположить при доставании наудачу, что будет вытянут белый шар, нежели черный. Может как раз случиться, что мы вынем черный шар; но все же мы вправе сказать, что вероятность этого события меньше, чем вероятность вынуть белый. Увеличивая число белых шаров и оставляя один черный, легко видеть, что вероятность вынуть черный шар будет уменьшаться. Так, если бы белых шаров было тысяча, а черных – один и если бы кому-либо предложили побиться об заклад, что будет вынут черный шар, а не белый, то только сумасшедший или азартный игрок решился бы поставить на карту значительную сумму в пользу черного шара.

Уяснив себе понятие об измерении вероятности, легко понять, каким образом Паскаль решил задачу, предложенную де Мере. Очевидно, что для вычисления вероятности надо узнать отношение между числом случаев благоприятных событию и числом всех возможных случаев (как благоприятных, так и неблагоприятных). Полученное отношение и есть искомая вероятность. Так, если белых шаров сто, а черных, положим, десять, то всех “случаев” будет сто десять, из них десять в пользу черных шаров. Поэтому вероятность вынуть черный шар будет 10 к 110, или 1 к 11.

Две задачи, предложенные кавалером де Мере, сводятся к следующему. Первая: как узнать, сколько раз надо метать две кости в надежде получить наибольшее число очков, то есть двенадцать; другая: как распределить выигрыш между двумя игроками в случае неоконченной партии. Первая задача сравнительно легка: надо определить, сколько может быть различных сочетаний очков; лишь одно из этих сочетаний благоприятно событию, все остальные неблагоприятны, и вероятность вычисляется очень просто. Вторая задача значительно труднее. Обе были решены одновременно в Тулузе математиком Ферма и в Париже Паскалем. По этому поводу в 1654 году между Паскалем и Ферма завязалась переписка, и, не будучи знакомы лично, они стали лучшими друзьями. Ферма решил обе задачи посредством придуманной им теории сочетаний. Решение Паскаля было значительно проще: он исходил из чисто арифметических соображений. Нимало не завидуя Ферма, Паскаль, наоборот, радовался совпадению результатов и писал: “С этих пор я желал бы раскрыть перед вами свою душу, так я рад тому, что наши мысли встретились. Я вижу, что истина одна и та же в Тулузе и в Париже”.

Приводим вкратце решение Паскаля. Предположим, говорит Паскаль, что играют два игрока и что выигрыш считается окончательным после победы одного из них в трех партиях. Предположим, что ставка каждого игрока составляет 32 червонца и что первый уже выиграл две партии (ему не хватает одной), а второй выиграл одну (ему не хватает двух). Им предстоит сыграть еще партию. Если ее выиграет первый, он получит всю сумму, то есть 64 червонца; если второй, у каждого будет по две победы, шансы обоих станут равны, и в случае прекращения игры каждому, очевидно, надо дать поровну.

Итак, если выиграет первый, он получит 64 червонца. Если выиграет второй, то первый получит лишь 32. Поэтому, если оба согласны не играть предстоящей партии, то первый вправе сказать: 32 червонца я получу во всяком случае, даже если я проиграю предстоящую партию, которую мы согласились признать последней. Стало быть, 32 червонца мои. Что касается остальных 32 – может быть, их выиграю я, может быть, и вы; поэтому разделим эту сомнительную сумму пополам. Итак, если игроки разойдутся, не сыграв последней партии, то первому надо дать 48 червонцев, или же 3/4 всей суммы, второму 16 червонцев, или у, из чего видно, что шансы первого из них на выигрыш втрое больше, чем второго (а не вдвое, как можно было бы подумать при поверхностном рассуждении).

Нетрудно видеть, что теория вероятностей имеет огромное применение. Посредством нее астрономы определяют вероятные ошибки наблюдений, артиллеристы вычисляют вероятное количество снарядов, могущих упасть в определенном районе, физики оценивают число частиц газа, ударяющих о стенки сосуда, страховые общества – размер премий и процентов, уплачиваемых при страховании жизни и имущества. Во всех случаях, когда явления чересчур сложны, чтобы допустить абсолютно достоверное предсказание, теория вероятностей дает возможность получить результаты, весьма близкие к реальным и вполне годные на практике.

Работы над теорией вероятностей привели Паскаля к замечательному математическому открытию, еще и теперь не вполне оцененному. Он составил так называемый арифметический треугольник, позволяющий заменять многие весьма сложные алгебраические вычисления простейшими арифметическими действиями.

Чтобы получить треугольник Паскаля, напишем горизонтальный ряд, составленный из единицы, повторенной сколько угодно раз: 1, 1, 1, 1 и т. д., и такой же вертикальный ряд. Дальнейшие числа треугольника получаются так: любое число треугольника Паскаля равно сумме числа стоящего над ним, с числом, стоящим слева от него. Так, например, написав сначала

Блез Паскаль. Его жизнь, научная и философская деятельность i_002.jpg

вставляем затем число 2 таким образом:

Блез Паскаль. Его жизнь, научная и философская деятельность i_003.jpg

потому что 2=1+1. Продолжая подобные действия, нетрудно составить, например, следующий треугольник Паскаля:

Блез Паскаль. Его жизнь, научная и философская деятельность i_004.jpg

Первая строка (и первый столбец) состоит из единицы, повторенной несколько раз; вторая строка (и столбец) – из натуральных чисел 1, 2, 3, 4, 5 и т. д.; третья строка (и столбец) – из так называемых треугольных чисел 1, 3, 6, 10 и т. д.; в четвертой строке (и столбце) стоят пирамидальные числа 1, 4, 10 и т. д.

Чтобы понять смысл этих названий, предположим, что требуется узнать сразу, сколько ядер находится в куче, имеющей вид треугольника, например, такой:

Блез Паскаль. Его жизнь, научная и философская деятельность i_005.jpg

Сначала положено 1 ядро, потом 2, 3, 4 и т. д. Словом, имеем ряд натуральных чисел. Легко убедиться, что искомая сумма равна тому числу в треугольнике Паскаля, которое стоит непосредственно под последним из слагаемых натуральных чисел. Так, в нашем примере под числом 4 стоит 10, и действительно 1+2+3+4=10. Число 10 обозначает число ядер в треугольной кучке, стороны которой содержат по 4 ядра. Числа 1, 3, 6, 10 называются “треугольными” числами.

Теперь представим себе пирамидальную кучу, составленную таким образом: на самом верху лежит одно ядро, под ним три, сложенные в треугольник,

Блез Паскаль. Его жизнь, научная и философская деятельность i_006.jpg

затем шесть, сложенные в треугольник

Блез Паскаль. Его жизнь, научная и философская деятельность i_007.jpg

и так далее. Чтобы сразу узнать, сколько ядер в такой куче, достаточно посмотреть, какое число написано под последним взятым нами треугольным числом. В данном примере искомым является число 10, стоящее под числом 6. Числа 1, 4, 10 и т. д., составляющие четвертый ряд (или столбец), могут быть названы “пирамидальными”, потому что обозначают число ядер в пирамидальных кучах.

Итак, первое применение треугольника Паскаля состоит в том, что он позволяет почти мгновенно вычислять довольно сложные суммы.

В теории вероятностей треугольник Паскаля также заменяет сложные алгебраические формулы.

При решении задач, относящихся к теории вероятностей, Паскалю пришлось искать суммы чисел, идущих на нашей фигуре от одной римской цифры до другой такой же цифры в косвенном направлении (по диагонали), например, 1+2+1, 1+3+3+1 и т. д. Исследование этих чисел навело Паскаля на решение частного случая задачи, известной под именем бинома Ньютона. Таким образом, Паскаль задолго до Ньютона открыл способ возвышать двучлен в целую положительную степень; Ньютон обобщил этот результат, распространив его на любые степени и дав ему алгебраическую форму.


Перейти на страницу:
Изменить размер шрифта: