Открытие сетевой структуры сверхскоплений галактик, если ее повсеместный характер подтвердится дальнейшими наблюдениями, имеет чрезвычайно важное значение для понимания особенностей строения и эволюции нашей Вселенной.

Дело в том, что сетевая структура неустойчива. Это, возможно, и служит причиной того, что систем более высокого порядка, чем сверхскопления, в нашей Вселенной не существует. Не исключено, что именно поэтому иерархия звездных систем обрывается на сверхскоплениях. Устойчивыми образованиями наиболее крупного масштаба являются скопления галактик. Правда, в современной Вселенной существует и следующая ступень иерархии — сверхскопления галактик. Но они рассеиваются и представляют собой временную фазу пространственного распределения звездных систем.

По-видимому, это говорит о том, что мы живем на некоем промежуточном этапе эволюции нашей Вселенной, этапе не слишком молодом, но и не слишком старом, когда структуре Вселенной еще предстоит измениться весьма существенным образом. По некоторым оценкам продолжительность этапа эволюции, на протяжении которого сохраняется сетевая структура в распределении галактик, — порядка 10 млрд. лет.

С другой стороны, сетевая структура сверхскоплений галактик как-то возникла. Она сформировалась из какого-то предшествующего состояния, которое, в свою очередь, тоже образовалось не на «пустом месте». Эта «цепочка» последовательных состояний, в конце концов, приведет нас к тому отдаленному этапу эволюции нашей Вселенной, когда складывались «зародыши» будущих космических объектов и их систем, которые составляют структуру современной Вселенной. Иными словами, сетевая структура сверхскоплений галактик отражает определенные начальные условия, которые и привели к подобному положению вещей. Какие? Возможно, ответ на этот вопрос сможет дать теория «блинов».

Правда, между этой теорией и наблюдаемой сетевой структурой обнаружились и некоторые несоответствия. Дело в том, что во всех обнаруженных полостях встречаются так называемые галактики Маркаряна — активные галактики с избыточным ультрафиолетовым излучением[6]). Между тем с точки зрения «блинной» теории должны существовать и полости, которые заполняет только ионизованный газ, но нет условий для образования галактик.

Таким образом, соотношение между «блинной» теорией и наблюдениями оказывается достаточно сложным. С одной стороны, теория предсказывает существование сетевой структуры, а с другой — не все ее выводы подтверждаются наблюдениями, а некоторые факты даже вступают с нею и в противоречия.

Но, вообще говоря, было бы трудно ожидать, чтобы сравнительно молодая теория, описывающая столь сложный процесс, как формирование галактик, к тому же процесс, удаленный от нас во времени на миллиарды лет, не стал иным излучением космической среды. На этом фоне выделяются отдельные дискретные источники — это второй класс космических «радиостанций».

Одним из важнейших открытий астрономии второй половины XX в., значительно расширившим наши представления о Вселенной, было обнаружение внегалактических источников радиоизлучения — радиогалактик. Большинство внегалактических радиообъектов составляют звездные системы, подобные нашей, — их называют нормальными галактиками. Радиоизлучение ближайших нормальных галактик (в частности, знаменитой галактики в Андромеде) имеет такие же свойства, как и радиоизлучение нашего звездного острова.

Однако есть галактики, которые резко отличаются от нормальных своим исключительно мощным радиоизлучением. Они излучают в радиодианазоне в сотни и даже миллионы раз больше энергии, чем нормальные. Один из самых известных объектов такого рода — радиоисточник в созвездии Лебедя. Подобные галактики и получили название радиогалактик. Поток радиоизлучения от галактики в Лебеде, принимаемый на Земле, такой же, как и от одного из самых интенсивных галактических радиоисточников — остатка сверхновой в Кассиопее. Но при этом расстояние до источника в Лебеде в 50 000 раз больше.

Как выяснилось, излучение радиогалактик, подобно радиоизлучению Крабовидной туманности, имеет синхротронную природу. Но если в Крабовидной туманности электроны приобрели околосветовые скорости в результате взрыва сверхновой звезды, то какие источники энергии работают в радиогалактиках? Источники, способные поддерживать их мощное радиоизлучение на протяжении многих миллионов лет?

Сейчас уже мало кто сомневается в том, что таким источником являются очень мощные физические процессы, протекающие в центральных частях радиогалактик — их ядрах.

Среди космических радиостанций особое внимание привлекают к себе уже известные нам квазары. В настоящее время зарегистрировано свыше 1500 квазаров. Внешне, для неспециалиста, квазары — довольно невзрачные объекты. На чувствительных астрономических фотопластинках они выглядят как крошечные звездообразные объекты (рис. 7). Однако астрономы были поражены, когда выяснилось, что эти объекты находятся от нас на огромных расстояниях — в миллиарды световых лет.

Одним из самых близких к нам квазаров является квазар ЗС 273[7]). Именно этот квазар и был открыт первым. Но даже он находится от нас на столь большом расстоянии, что мы наблюдаем его таким, каким он был несколько миллиардов лет назад. Одиночная звезда при таком удалении наблюдаться не может.

Занимательная астрофизика i_011.png
Рис. 7. Квазар ЗС 273. Справа вверху — «выброс».

Исходя из этого, можно заключить, что энерговыделение квазаров огромно. Светимость всей нашей Галактики составляет около 1037 Вт. У квазаров она на несколько порядков выше! А общее количество энергии, выделяемой квазарами, оценивается в 1054 Дж. Это в 10 триллионов раз больше, чем выделило Солнце за все время своего существования. Такого количества энергии вполне достаточно, чтобы поддерживать наблюдаемое энерговыделение квазаров на протяжении сотен тысяч лет.

К этому следует добавить, что оптическое излучение многих, квазаров является переменным. И в максимуме оно может достигать фантастической величины. Так, например, квазар ЗС 279 несколько десятков лет тому назад обладал светимостью, в 10 тысяч раз превосходящей светимость нашей Галактики! Когда же были определены размеры компактных, радиоисточников, связанных с квазарами, астрономы удивились еще больше. Выяснилось, что эти объекты гораздо меньше даже одиночных галактик. Их диаметры не превышают одного светового года. Напомним, что поперечник нашей Галактики — около 100 тыс. световых лет.

Тем не менее имеются серьезные основания предполагать, что квазары и галактики эволюционно связаны. Во всяком случае есть одно очень весомое соображение в пользу того, что квазары — объекты, которые характерны для более ранних стадий истории нашей астрономической Вселенной, чем галактики. В самом деле, все квазары находятся от нас на огромных расстояниях в миллиарды световых лет. Следовательно мы видим их такими, какими они были много миллиардов лет назад. На этом основании можно сделать вывод, что квазары — образования, которые были характерны для Вселенной много миллиардов лет тому назад и не свойственны ее современному состоянию.

Однако, по вопросу о характере связи между квазарами и ядрами галактик существуют две точки зрения. Согласно одной из них, в центре галактики, в совокупности большого количества звезд и газа образуется сравнительно не-1 большое (размером 1016-1017 см), но гигантское по масса (порядка 108-109 масс Солнца) ядро. Если галактика медленно вращается, то формирование такого ядра представляется довольно естественным: газ и звезды как бы «стекают» в «потенциальную яму», т. е. в ограниченную область, расположенную в центральной части галактики, в которой потенциальная энергия частиц меньше, чем вне ее. С точки зрения подобной гипотезы колоссальная светимость квазаров объясняется выделением при гравитационном сжатии огромного количества энергии.

вернуться

6

Они названы так по имени исследовавшего этот тип звездных систем академика АН Армянской ССР Б. Е. Маркаряна.

вернуться

7

Приводимые в книге обозначения М, NGC, ЗС и др. с номером — это обозначения небесных объектов (туманностей, галактик, квазаров) в различных каталогах.


Перейти на страницу:
Изменить размер шрифта: