Иное дело в астрофизике, Благодаря конечной скорости распространения электромагнитных волн, чем дальше находится от нас тот или иной космический объект, тем в белее отдаленном прошлом мы его наблюдаем. Радиогалактика в созвездии Лебедя предстает перед нами такой, какой она была около 700 млн. лет назад, а некоторые радиоисточники мы наблюдаем с опозданием, по-видимому, на 10 и более млрд. лет.

Таким образом, регистрируя различные электромагнитные излучения, приходящие на Землю из глубин космоса, мы в принципе можем получать непосредственную информацию о ранних стадиях эволюции Вселенной.

Есть, однако, еще один путь проникновения в прошлое. Дело в том, что минувшее не исчезает совершенно бесследно. В той или иной степени оно отражено в настоящем.

В природе мы встречаемся с закономерностями, которые можно разделить на две группы. Первую составляют общие законы природы, которые действуют всегда, когда для этого складываются определенные условия. К числу подобных законов относятся, например, закон всемирного тяготения, законы движения Ньютона, законы Кеплера и т. п. Вторая группа — закономерности, действующие в данной конкретной материальной системе, сложившиеся в процессе ее эволюции. Эти закономерности в наибольшей степени связывают современное состояние данной системы с ее предшествующими состояниями, настоящее с прошлым. Поэтому выявление и изучение подобных закономерностей может дать наиболее ценную информацию об истории той или иной материальной системы.

Применительно ко Вселенной это означает, что ключ к познанию ее прошлого — в изучении современного состояния космических объектов. Не всякое прошлое, не всякая предыстория могла привести Вселенную к тому состоянию, которое мы наблюдаем сегодня, в современную эпоху.

Можно сказать, что в первоначальной сверхплотной плазме, в результате расширения которой образовалась наша Вселенная, были как бы запрограммированы ее основные свойства. Это не была, разумеется, железная предопределенность классической механики — в дальнейшей эволюции немалую роль играли случайные процессы, но все же «основной сценарий» развития Вселенной содержался в ее начальном состоянии. Иными словами, далеко не всякое начальное состояние могло в дальнейшем породить именно ту структуру Вселенной и те ее свойства, которые мы наблюдаем в настоящую эпоху.

Другой путь — построение моделей начальных фаз нашей Вселенной с помощью фундаментальных физических теорий. В основе этих теорий лежит огромный экспериментальный и наблюдательный материал, они прошли многократную практическую проверку, и в их справедливости не приходится сомневаться. Разумеется, когда мы распространяем эти теории за границы, в которых их применимость надежно доказана, экстраполируем их на необычные области явлений, полученные результаты не могут считаться абсолютно надежными. Тем не менее подобным методом приходится пользоваться, поскольку для познания прошлого у науки слишком мал выбор средств.

Более того, как отмечает в одной из своих статей Я. Б. Зельдович, требования современной космологии растут быстрее, чем накапливаются соответствующие экспериментальные данные. Поэтому космологам в своих теоретических изысканиях приходится пользоваться не только общепринятыми фундаментальными физическими теориями, но также и такими, которые еще нельзя считать достаточно строго обоснованными.

Создавая различные теоретические модели Вселенной, в том числе и ранних стадий ее расширения, и сопоставляя их с данными о современном состоянии Вселенной и ее объектов, полученными в результате астрономических наблюдений, ученые имеют возможность совершенствовать эти модели, вносить в них необходимые поправки и уточнения, отбрасывать предположения, вступающие в противоречие с современными данными, и таким образом постепенно восстанавливать картину эволюции от самых ранних ее этапов до нашей эпохи. При этом наибольший интерес представляют такие черты современной Вселенной, которые с полным правом можно назвать удивительными загадками.

Вот одна из них. Как уже говорилось выше, современная Вселенная в достаточно больших масштабах однородна и изотропна. Это значит, что свойства ее любых достаточно больших областей приблизительно одинаковы, а любые направления равноправны.

Но однородность Вселенной в больших масштабах требует специального объяснения. Дело в том, что никакие физические взаимодействия не могут распространяться со скоростью, превосходящей скорость света, которая, как известно, конечна и равна 300 000 км/с. Отсюда, между прочим, следует, что доступная непосредственному наблюдению область Вселенной всегда конечна. Мы не можем видеть объекты, удаленные от нас на такие расстояния, которые световой луч не успевает преодолеть за время существования Вселенной.

В связи с этим говорят о «горизонте», расширить который мы не можем никакими техническими ухищрениями: ведь он определяется не уровнем совершенства астрономических инструментов, а конечной скоростью распространения света. Хотя, разумеется, по мере старения Вселенной оптический горизонт постепенно отодвигается.

Но дело не только в том, что наличие горизонта в расширяющейся Вселенной ограничивает возможности наших астрономических наблюдений. Гораздо существеннее то, что на любой стадии расширения Вселенной в ней имеются такие точки, которые отделены друг от друга расстояниями, превосходящими расстояние оптического горизонта. Нетрудно сообразить, что между такими точками не может быть никакой причинной зависимости. Физические процессы, происходящие в одной из них, не могут оказывать никакого воздействия на события в другой. Образно говоря, любая из таких точек не может «знать», что творится в другой.

В частности, как показывают подсчеты, излучение, приходящее к нам из окраинных районов Вселенной, отстоящих друг от друга на угловое расстояние свыше 30 градусов, исходит из областей, разделенных расстояниями, превышающими оптический горизонт.

Между тем изучение информации, содержащейся в электромагнитных излучениях, свидетельствует о том, что физические параметры, характеризующие состояние материи у границ наблюдаемой Вселенной, везде приблизительно одинаковы.

Это крайне загадочно, ибо в равномерно расширяющейся Вселенной не может существовать никакого физического механизма выравнивания неоднородностей на расстояниях, превосходящих оптический горизонт.

Как же в таком случае объяснить однородность? Может быть, события, которые привели к выравниванию физических условий в расширяющейся Вселенной, развернулись уже на самых ранних стадиях ее существования?

К числу загадок нашей Вселенной относится и средняя плотность вещества, которая (если не учитывать возможного существования массы покоя нейтрино) сравнительно мало отличается от теоретического критического значения, составляющего, как мы уже знаем, 3·10-29 г/см3.

Как и всякое совпадение, это совпадение также требует своего объяснения…

Не исключено, что загадки, о которых идет речь, найдут свое объяснение в современной теории физического вакуума.

Вакуум — это скрытая форма существования вещества. Если говорить более строгим физическим языком — наинизшее энергетическое состояние всех физических полей, при котором нет реальных частиц. Но в то же время вакуум при определенных условиях может рождать реальные частицы и это происходит без нарушения законов сохранения.

Обладает вакуум и гравитационными свойствами. Но этой гравитации, в отличие от обычной, соответствуют не силы притяжения, а силы отталкивания, и она изменяется пропорционально первой степени расстояния.

В современной Вселенной гравитация вакуума либо полностью отсутствует, либо исчезающе мала. Однако при температуре, превосходившей температуру «Великого объединения», она достигала огромного значения. Это было состояние так называемого «ложного вакуума».

В процессе расширения наступил момент, когда гравитация вакуума превзошла гравитацию обычного вещества, и это должно было вызвать ускоренное расширение, «раздувание» Вселенной, сопровождавшееся стремительным уменьшением плотности обычного вещества и не менее стремительным понижением температуры.


Перейти на страницу:
Изменить размер шрифта: