Атмосферы планет. Наличие газовой оболочки вокруг П. может быть легко замечено при наблюдениях с Земли по потемнению диска П. к краям, по постепенному (а не мгновенному) угасанию звезды в случае, когда П. приходит перед звездой (покрытие звезды П.), по наличию облачных образований. Фотометрические измерения П. позволяют вывести значение отражательной способности либо П. в целом, либо её частей, что выражают через величину альбедо. Многие П. имеют большое альбедо, что указывает на присутствие мощной атмосферы. Величина альбедо и характер изменения блеска П. с изменением её фазы позволяют с помощью теории рассеяния света определить количественные характеристики атмосферы П., в первую очередь её оптическую толщину и протяжённость. В этом направлении в 20 в. ценные результаты получили советские астрономы Н. П. Барабашов, В. Г. Фесенков, В. В. Шаронов. При интерпретации таких наблюдений пользуются измерениями поляризации света П. Наличие в атмосфере твёрдых и жидких частиц (аэрозолей) сильно увеличивает рассеяние и приводит к завышенным сведениям о газовой составляющей атмосферы П. (как, например, до середины 60-х гг. 20 в. мощность атмосферы Марса преувеличивалась в 1020 раз). Измерение отражательной способности, цвета и поляризации света отдельными деталями поверхности П. не дают, к сожалению, однозначного ответа на вопрос о природе этих деталей.

  О мощности атмосферы П. судят по упругости газов у её основания, т. е. по величине, которую показал бы барометр-анероид на поверхности П.: выражают её в миллибарах (мбар). Эта величина не совпадает с действительным атмосферным давлением на поверхности П., зависящим (пропорционально) от ускорения силы тяжести на П., зато позволяет непосредственно сравнивать атмосферу П. с атмосферой Земли, а также вычислить общую массу газовой оболочки П. Мощность атмосферы (или какого-либо газа в ней) может характеризоваться специальной величиной (в м-атм, или см-атм), эквивалентной высоте (в м или см), на которую она простиралась бы, если бы имела повсюду плотность, соответствующую давления в 1 атм » 1013 мбар, и температуру 0 oC. На Земле эта величина составляет около 8000 м-атм, на Меркурии 13 см-атм, на Марсе давление атмосферы у поверхности 58 мбар (по анероиду), на Венере около 100 атм. Очень мощные атмосферы имеют П.-гиганты.

  Химический состав атмосфер П. определяется из спектральных наблюдений по интенсивности молекулярных полос поглощения, возникающих в спектре солнечного излучения, после того как оно дважды прошло через атмосферу П.— до и после отражения от её поверхности. Сложность применения этого метода связана с тем, что на спектрограмме, полученной на земной поверхности, эти полосы трудно отделимы от полос, обусловленных прохождением света через земную атмосферу. Частично эти затруднения устраняются при наблюдениях с баллонов (см. Баллонная астрономия). Этим методом сравнительно легко обнаруживаются газы атмосфер П., отсутствующие или имеющиеся в небольшом количестве в атмосфере Земли; таковы: углекислый газ (CO2), метан (CH4), аммиак (NH3), водород (H2). Труднее обнаружить водяные пары (H2O) и кислород (O2). Почти невозможно обнаружить у П. таким способом гелий (Не), азот (N2), аргон (Ar) и некоторые др. газы, дающие полосы поглощения в далёкой ультрафиолетовой части спектра. К началу космической эры уже было установлено, что у Венеры и Марса главной составляющей атмосферы является CO2, а у внешних П.— молекулярный водород H2 (около 85 км-атм над облачным слоем Юпитера), CH4 и NH3. Предполагается по аналогии с составом атмосферы Солнца наличие большого количества гелия.

  Космическая эра принесла новую методику исследования атмосфер П. Измеряя ослабление радиосигналов космических зондов, заходящих за П., вследствие поглощения в атмосфере, можно вывести «шкалу высот» атмосферы и определить т. о. отношение её температуры Т к среднему молекулярному весу m. Однако этот метод применим только к разрежённым атмосферам или к верхним слоям более мощных атмосфер. Несравненно эффективнее непосредственный контакт спускаемых аппаратов космических зондов с атмосферой П. Такой эксперимент был осуществлен в 60-х гг. 20 в. при спуске на Венеру зондов серии «Венера» (СССР). Измерения интенсивности той или иной молекулярной полосы в спектре деталей П., над которыми пролетает искусственный спутник П., даёт возможность определить также и расстояние до поверхности П. в этом месте, т. е. рельеф П. под траекторией спутника. Ценные результаты такого рода были получены с помощью искусственных спутников Марса «Марс-3», «Марс-5» (СССР) и «Маринер-9» (США). Вследствие вращения П. под орбитой спутника проходят разные части её поверхности, благодаря чему рельеф Марса был определён на значительной части его поверхности с точностью до нескольких сот м.

  Температура планет. Прямые измерения интегрального теплового потока или излучения П. в отдельных областях её инфракрасного спектра, осуществляемые, например, с помощью болометров, позволяют определить общую температуру П. или температуру отдельных её частей. Та же задача может быть решена путём измерения тепловых потоков П. радиометодами в сантиметровом, дециметровом и метровом диапазонах. Из подобных измерений выводятся минимальные температуры, основанные на предположении, что П. излучает как абсолютно чёрное тело. Есть основание полагать, что истинные температуры лишь немного выше полученных этим методом. Кроме того, радиоизмерения позволяют определять температуру на разных уровнях атмосферы П. и даже на разных глубинах под её поверхностью (в пределах метров), т.к. излучение разных частот испытывает разное поглощение в атмосфере и в твёрдой коре П. Именно методом радиоизмерений была измерена истинная температура поверхности Венеры — около + 500 °С; болометрические же измерения давали температуру только верхней её атмосферы, на уровне облаков (около — 40 °С). Сравнение теоретической равновесной температуры (т. е. той, которую должна была бы иметь П., если бы её единственным источником тепла было солнечное облучение) с измеренной температурой даёт возможность судить о том, что П. обладает собственными источниками тепла, которое просачивается наружу. Этот процесс очень существенно зависит от теплопроводности коры и атмосферы П. Атмосфера может обусловливать сильный парниковый эффект, сущность которого заключается в том, что она пропускает приходящее от Солнца оптическое излучение, но в значительной мере задерживает уходящее наружу длинноволновое (тепловое) излучение самой П. Поэтому П., лишённая атмосферы, холоднее и отличается большей суточной амплитудой температуры, чем П. с атмосферой. Именно поэтому у Венеры под мощной атмосферой температура на 550 °С выше, чем на уровне облаков, а дневная температура практически неотличима от ночной. У Юпитера также при равновесной температуре 110 К измерения в инфракрасном диапазоне показали температуру 123 К, а на миллиметровых и сантиметровых волнах даже 150 К. Она ещё выше в дециметровом диапазоне, но это является следствием нетеплового излучения П., к которому понятие температуры неприменимо. У др. П.-гигантов превышение измеренных температур над равновесными ещё больше, но измерения менее точны. Для определения температуры отдельных деталей поверхности П. пригодны только тепловые измерения с крупными телескопами в инфракрасной области спектра. Так было установлено, например, что в экваториальной области Марса летом дневные температуры могут быть заметно выше 0 °С, ночные же — около — 60 °С; что тёмные «моря» теплее светлой «суши» и т.д.


Перейти на страницу:
Изменить размер шрифта: