Самосвал

Самосва'л, грузовой саморазгружающийся автомобиль, прицеп или полуприцеп. Различают основные типы С.: с опрокидывающимся кузовом бункерного типа (с наклонным днищем) и с принудительной разгрузкой (например, шнеком). Наиболее распространены С. с опрокидывающимся кузовом. Для опрокидывания кузова используют преимущественно гидравлические подъёмники телескопического типа. В СССР С. выпускаются на базе серийных шасси, имеют грузоподъёмность 3,5—10 т; карьерные С. имеют грузоподъёмность 27, 40 т и выше.

Большая Советская Энциклопедия (СА) i009-001-224288665.jpg

Самосвал МАЗ-549 с двумя задними мотор-колёсами грузоподъемностью 75 т.

Самосев

Самосе'в древесных пород, молодые растения, выросшие из семян материнского насаждения (см. Подрост). В лесоводстве С. используют при естественном возобновлении леса. С. может вырасти на сплошных вырубках из семян деревьев старого леса, примыкающего к вырубке, из семян специально оставляемых деревьев (семенных). Появляется группами на наиболее благоприятных для прорастания семян местах, где обеспечены лучшие условия для его роста и сохранности (защита от солнцепёка, заморозков и конкуренции трав). В некоторых случаях развитие С. задерживается различными вредителями (личинки пластинчатоусых, долгоносиков, медведок) и болезнями (шютте и др.).

Самосинхронизация

Самосинхрониза'ция в электроэнергетике, автоматический процесс, сопровождающий включение синхронных машин (генераторов, компенсаторов, электродвигателей) на параллельную (синхронную) работу с другими машинами или электроэнергетической системой. Синхронный генератор, обычно вращающийся со скоростью, отличающейся от синхронной скорости, подключают при отключенном возбуждении. Синхронные электродвигатель и компенсатор подключают в режиме асинхронного электродвигателя. За счёт асинхронного вращающего момента скорость вращения подключаемой машины приближается к синхронной, и затем автоматически включается возбуждение; возникающий синхронный вращающий момент «втягивает» машину в синхронизм (см. Синхронизация). С. — эффективный способ повышения надёжности работы электроэнергетической систем (в особенности в аварийных условиях).

Самосогласованное поле

Самосогласванное по'ле, усреднённое определённым образом взаимодействие с данной частицей всех других частиц квантово-механической системы, состоящей из многих частиц. Задача многих взаимодействующих частиц очень сложна и не имеет точного решения. Поэтому используются приближённые методы расчёта. Один из наиболее распространённых приближённых методов квантовой механики основан на введении С. п., позволяющего свести задачу многих частиц к задаче одной частицы, движущейся в среднем С. п., создаваемом всеми другими частицами. Различные варианты введения С. п. отличаются способом усреднения взаимодействия. Метод С. п. широко применяется для приближённого описания состояний и расчёта многоэлектронных атомов, молекул, тяжёлых ядер, электронов в металле, системы спинов в ферромагнетике и т. д.

  В квантово-механической системе многих взаимодействующих частиц движение любой частицы сложным образом взаимосвязанно (коррелированно) с движением всех остальных частиц системы. Вследствие этого каждая частица не находится в определённом состоянии и не может быть описана с помощью своей («одночастичной») волновой функции. Состояние системы в целом описывается волновой функцией, зависящей от координатных и спиновых переменных всех частиц системы. Исходное предположение метода С. п. состоит в том, что для приближённого описания системы можно ввести волновые функции для каждой частицы системы; при этом взаимодействие с др. частицами приближённо учитывается введением поля, усреднённого по движению остальных частиц системы с помощью их одночастичных волновых функций. Одночастичные волновые функции должны быть «самосогласованными», так как, с одной стороны, они являются решением Шрёдингера уравнения для одной частицы, движущейся в среднем поле, создаваемом другими частицами, а с другой — эти же одночастичные волновые функции определяют средний потенциал поля, в котором движутся частицы. Термин «С. п.» связан с этим согласованием.

  Простейший метод введения С. с. (в котором определяются не волновые функции, а плотность распределения частиц в пространстве) — метод Томаса — Ферми, предложенный английским физиком Л. Томасом (1927) и итальянским физиком Э. Ферми (1928) независимо друг от друга. В многоэлектронных атомах средний потенциал, действующий на данный электрон, изменяется достаточно медленно. Поэтому внутри объёма, где относительное изменение потенциала невелико, находится ещё много электронов, и электроны, которые подчиняются Ферми — Дирака статистике, можно рассматривать как вырожденный ферми-газ (см. Вырожденный газ) методами статистической физики. При этом действие всех остальных электронов на данный можно заменить действием некоторого центрально-симметричного С. п., которое добавляется к полю ядра. Это поле подбирается так, чтобы оно было согласовано с распределением средней плотности заряда (пропорциональной распределению средней плотности электронов в атоме), так как потенциал электрического поля связан с распределением заряда Пуассона уравнением. Средняя плотность электронов в свою очередь рассматривается как плотность вырожденного идеального ферми-газа, находящегося в этом среднем поле, и связана с ним через максимальную энергию распределения Ферми при абсолютной температуре Т = 0 (через Ферми энергию). Это означает, что выбор средний потенциала поля должен быть «самосогласованным». С. п. Томаса — Ферми объясняет порядок заполнения электронных оболочек в атомах, а следовательно, и периодическую систему элементов. Этот метод применим также в теории тяжёлых ядер. Он позволяет объяснить порядок заполнения нуклонами (протонами и нейтронами) ядерных оболочек; при этом, кроме центрально-симметричного С. п., нужно учитывать С. п., вызванное взаимодействием орбитального движения нуклонов с их спином (спин-орбитальное взаимодействие).

  Другой, более точный, метод введения С. п. — метод Хартри (предложен английским физиком Д. Хартри в 1927). В этом методе волновая функция многоэлектронного атома представляется приближённо в виде произведения волновых функций отдельных электронов, соответствующих различным квантовым состояниям электронов в атоме. Такому распределению электронов отвечает некоторое среднее С. п., которое зависит от выбора одноэлектронных функций, а эти функции в свою очередь зависят от среднего поля. Одноэлектронные волновые функции выбираются из условия минимума средней энергии, что обеспечивает наилучшее приближение для выбранного типа волновых функций. С. п. в этом случае получается с помощью усреднения по орбитальным движениям всех других электронов. Для различных состояний электронов в атоме С. п. оказываются различными. Волновые функции электронов определяются тем же средним потенциалом поля. Это означает, что потенциал и волновые функции должны быть выбраны самосогласованным образом.

  В методе Хартри не учитывается Паули принцип, из которого следует, что полная волновая функция электронов в атоме должна быть антисимметричной. Более совершенный метод введения С. п. даёт Хартри — Фока метод (предложенный В. А. Фоком в 1930), который исходит из волновой функции (электронов в атоме) правильной симметрии в виде определителя из одноэлектронных орбитальных волновых функций, что обеспечивает выполнение принципа Паули. Одноэлектронные функции находят, как и в методе Хартри, из минимума средней энергии. При этом получается С. п. с усреднением, в котором учитывается корреляция орбитальных электронов, связанная с их обменом (см. Обменное взаимодействие).


Перейти на страницу:
Изменить размер шрифта: