При наличии в приземном слое атмосферы высокой влажности и мощной температурной инверсии создаются благоприятные условия для сильного преломления и концентрации звуковых лучей вдоль речной долины, как акустического волновода. В этом случае возможны явления типа акустического миража, и дальность слышимости шума водопада резко возрастает. Статистика наблюдений показывает, что ночью шум водопадов слышен в среднем в 3...4 раза дальше, чем днем. Шум водопада Виктория во время половодья (март – июнь) ночью и при отсутствии маскирующих шумов отчетливо слышен в аэропорту, расположенном в одиннадцати километрах от водосброса.
Огромная масса воды Ниагары низвергается с высоты в 50 м и развивает при этом мощность примерно в 4 млн лошадиных сил. На возбуждение акустических колебаний затрачивается менее 1% этой мощности. Шум Ниагары днем обычно слышен на расстоянии 1,6...2 км, ночью же дальность его слышимости может достигать 6...7 км. На расстоянии 57 м от места дробления воды шум Ниагары составляет 87 дБ, у самого же места дробления он настолько оглушителен, что люди буквально не слышат друг друга.
Как показали измерения, у небольшого ручья с расходом воды порядка 0,5...2 л/сек энергия шума распределяется на частоты от 40 Гц до 8 кГц с максимумом в диапазоне 1,6...2 кГц. У водопада с расходом воды 30...40 мз/сек звуковая энергия приходится на тот же диапазон частот, что и для ручья, но максимум смещается к 1 кГц и становится менее острым. У Ниагары при расходе воды в течение суток от 1 500 до 3 000 м3/сек максимум звуковой энергии приходится на диапазон 37...75 Гц. При уменьшении расхода воды происходит небольшое увеличение звуковой энергии Ниагары в диапазоне частот 600 Гц – 4,8 кГц. Общая величина энергии высоких частот (2,4...4,8 кГц) в шуме этого водопада заметно ниже по уровню в сравнении с низкими частотами (75...150 Гц).
Шум водопадов всегда возникает при вспенивании дробящейся воды, когда в ней образуются и захлопываются пузырьки различных размеров (кавитация). Самая сильная компонента в звуке захлопывающихся пузырьков соответствует частоте их резонанса. Поскольку при дроблении воды могут возникать кавитации различных размеров, акустический спектр дробления охватывает сравнительно широкий диапазон частот. Максимум в этом спектре соответствует наиболее часто встречающимся размерам кавитаций. При диаметре большинства пузырьков в 0,33 см резонансная частота их колебаний равна 2 кГц. Это соответствует максимуму в акустическом спектре ручья. У небольшого водопада при диаметре кавитаций в 0,66 см максимум в акустическом спектре приходится на частоту в 1 кГц. Для максимума в спектре Ниагары диаметр пузырьков должен быть равен 12 см.
У некоторых водопадов за счет отражения звука от высоких прибрежных скал создаются благоприятные условия для резонанса воздушной среды между скалами, В результате шум водопада приобретает индивидуальную окраску.
Шумит не только падающая вода, но и набегающие на берег волны, например, морской прибой. Уже при небольшом ветре возникает волнение моря, и волны чередой накатываются на берег. В зоне прибоя волны отдают энергию, накопленную при движении в морях и океанах. Волны прибоя создают при ударе о берег давление от 3 000 до 30 000 кг/м2 и во время сильных бурь могут перемещать глыбы весом до 100 тонн. Возникающие при мощном дроблении водных масс крупные капли поднимаются в высоту до 60 м. Удары волн обрушиваются на берег довольно регулярно со средним периодом 4,8 секунды (при слабом и сильном волнении) и являются причиной возбуждения в атмосфере мощных инфразвуковых колебаний.
Инфразвуки большой энергии с частотой 0,1...0,3 Гц возникают за счет колебания (поднятия и опускания) свободной поверхности воды при волнении. Это происходит на всей затронутой волнением поверхности морей и океанов.
Наряду с инфразвуками, в зоне прибоя порождаются и колебания звукового диапазона за счет дробления воды с образованием кавитаций и перемещения прибрежной гальки. Во время слабого и среднего волнения сила звука прибоя в месте его возникновения составляет 77...82 дБ. При сильном волнении звуки прибоя у скалистых берегов могут усиливаться расположенными в скалах пещерами и выемками. В этом случае получается особенно громкий гул и грохот. В сторону моря зона слышимости прибоя простирается обычно на 300...800 м, в сторону суши, в зависимости от рельефа местности, – на 100...800 м. Спектр шума прибоя подобен спектру шума небольшого водопада.
Электричество водопадов
Впервые электризация жидкости при дроблении была замечена у водопадов Швейцарии в 1786 году. С 1913 года явление получило название баллоэлектрического эффекта. Эффект электризации наблюдается не только у водопадов на открытой местности, но и в пещерах. Заряд воздуху у водопадов сообщают микроскопические капельки воды и молекулярные комплексы, которые при дроблении отрываются от водной поверхности и уносятся в окружающую среду. Наиболее значительный эффект электризации воздуха наблюдается у самых больших водопадов мира – у водопада Игуассу на границе Бразилии и Аргентины (высота падения воды 190 м, ширина потока 1 500 м) и у водопада Виктория на реке Замбези в Африке (высота падения воды 133 м, ширина потока 1 600 м). У водопада Виктория за счет дробления воды возникает электрическое поле напряженностью до 25 кв/м. С удалением от водосброса это поле уменьшается и на расстоянии около 1,6 км по горизонтали и 0,5 км по вертикали электрическое поле водопада переходит в нормальное электрическое поле земной поверхности. При дроблении пресной воды в воздух переходит отрицательный заряд. Поэтому в воздухе у водопадов количество отрицательных ионов превышает количество положительных. У небольшого водопада Учан-Су в Крыму отношение отрицательных ионов к количеству положительных равно 6,2, а у водопада Ак-Су в Средней Азии оно составляет около 4.
У берегов морей воздух вместо отрицательного заряда приобретает положительный вследствие того, что здесь происходит разбрызгивание не чистой, а соленой воды. На поверхности морей и океанов разбрызгивание воды начинается при скорости ветра более 10 м/сек, когда на волнах появляются гребешки пены. Отношение положительных зарядов к отрицательным в воздухе над морем при бурном море достигает 2,04, при зыби оно близко к 1,48.
Наибольшая электризация воздуха наблюдается при разбрызгивании чистой воды. С увеличением концентрации примесей электризация уменьшается и далее меняет знак (в естественных условиях, например, у берегов морей и над морской поверхностью). Уменьшение выхода электричества вплоть до обращения знака эффекта при добавлении к воде кислот происходит при меньшей концентрации примеси, чем при добавлении солей. С увеличением вязкости жидкости ее электризация при дроблении уменьшается. Подвижность выходящих при баллоэлектрическом эффекте в воздух заряженных капелек и молекулярных комплексов может изменяться от 4 до 0,05см/сек/вольт/см при радиусе этих образований в пределах 3·10–8...4·10–7.
Выход электричества различен при разбрызгивании капель разной величины. Для капли диаметром 4,4 мм при скорости падения 6,8 м/сек высвобождается заряд 0,89 10–12 кулон/см3, в то время как для капли диаметром 0,4 мм при скорости падения 4 м/сек отдача заряда составляет 10–12 кулон! см3. При наибольшей интенсивности разбрызгивания наблюдается выход заряда порядка 10–10 кулонов на каплю.
Баллоэлектрический эффект наблюдается только у дипольных жидкостей*. Основной причиной эффекта является наличие на поверхности жидкости слоя ориентированных диполей, которые создают двойной электрический слой внутри жидкости. Электрическое поле диполей простирается на некоторую глубину внутрь жидкости и концентрирует вблизи ее границ свободные заряды. У недипольных жидкостей электрическое поле поверхностного двойного электрического слоя внутрь жидкости не проникает.