Близкий по замыслу эксперимент также был поставлен на космической станции «Скайлэб». В отличие от исследований, выполненных на станции «Салют-5», американские ученые изучали не взаимную диффузию двух различных веществ, а более простой случай — процесс самодиффузии. С этой целью в цинковый цилиндрический стержень вставлялся диск, изготовленный из радиоактивного изотопа цинка Zn65. При нагреве стержень плавился, вдоль него устанавливался перепад температуры, в результате чего начинался процесс диффузии радиоактивного изотопа в основной материал (самодиффузия). В предположении, что в космических условиях влиянием конвекции на перенос массы можно пренебречь и основную роль там играет процесс диффузии, был выполнен расчет распределения радиоактивного изотопа по длине стержня. Результаты расчета хорошо совпали с данными космического эксперимента (рис. 7). В контрольных экспериментах, проведенных с аналогичными образцами на Земле, эффективный коэффициент диффузии радиоактивного цинка вследствие конвекции оказался в 50 раз выше, чем для космических условий.

Космическая технология и производство img_8.png

Рис. 7. Распределение радиоактивного цинка вдоль образца (о и Δ — эксперименты на Земле для двух положений образца, сплошная линия — расчет и эксперименты в космосе)

Этот эксперимент, как и эксперимент с прибором «Диффузия», показал, что для исследованных условий влиянием конвекции на перенос массы в расплаве можно пренебречь и что основную роль играет процесс диффузионного переноса. Этот вывод подтверждает возможность получения в космосе кристаллических материалов с однородной структурой, которую в земных условиях нарушают, в частности, конвекционные течения. Однако практически реализовать эту возможность и обеспечить получение в космосе материалов с более однородным распределением примесей удается не всегда.

Рассмотрим в качестве примера эксперимент «Универсальная печь», поставленный при совместном полете кораблей «Союз» и «Аполлон». В ходе этого эксперимента исследовалась возможность получения однородных монокристаллов германия, содержащих примеси кремния (0,5 % по массе) и сурьмы (сотые доли процента). Цилиндрический образец нагревался до температуры плавления, за исключением холодного конца, который предполагалось использовать в качестве «затравки» при кристаллизации. Образец выдерживался при максимальной температуре в течение 1 ч, после чего 5 ч охлаждался со скоростью 0,6 град/мин, а затем происходило неконтролируемое охлаждение печи до полного остывания (рис. 8).

Космическая технология и производство img_9.png

Рис. 8. Патрон для эксперимента «Универсальная печь» (1 — графитовый нагревательный блок; 2 — графитовый тепловой вкладыш; 3 — оболочка из нержавеющей стали; 4 — изоляция; 5 — запорный механизм; 6 — блок отвода тепла; 7 — медный тепловой вкладыш)

Анализ доставленных на Землю образцов показал, что, вопреки ожиданиям, после переплава и затвердевания в условиях, близких к невесомости, распределение примесей в поперечном сечении образца стало менее однородным. При этом более легкая примесь (кремний) сместилась в одном направлении по диаметру образца, а более тяжелая (сурьма) — в противоположном. Такое перераспределение примесей в образце, возможно, связано с тем, что именно по диаметру ампулы действовали во время эксперимента малые ускорения, обусловленные работой двигателей системы ориентации и стабилизации корабля. Однако конкретный механизм процессов, приведших к ухудшению однородности распределения примеси в этом эксперименте, в настоящее время однозначно не установлен.

Возможно, что для того диапазона ускорений, которые наблюдались на борту корабля «Аполлон» во время эксперимента «Универсальная печь», конвекционные течения были особенно интенсивны. Выполненные советскими учеными с помощью ЭВМ расчеты процессов тепло- и массопереноса для условий, соответствующих этому эксперименту, подтвердили такую возможность. В этом случае перераспределение примесей в расплаве и ухудшение однородности образца после его перекристаллизации в космосе следует связать именно с возникшими в расплаве конвекционными течениями. Но возможны и другие объяснения результатов эксперимента «Универсальная печь».

Рассмотренные эксперименты показали, что для правильной организации в космосе процессов массопереноса необходимо обеспечить такие условия, когда конвекционными эффектами можно пренебречь. В противном случае в зависимости от конкретных условий возможно как повышение, так и ухудшение однородности распределения примесей в исследуемых материалах.

Если в приведенных примерах необходимо было проанализировать возможное влияние на процессы тепло- и массопереноса естественной конвекции, которая зависит от величины малого ускорения, действующего на космический аппарат, то в других случаях следует учитывать конвекционные эффекты, не зависящие от ускорений. Укажем в качестве примера на термокапиллярную конвекцию, которая в некоторых случаях также может явиться причиной ухудшения структуры материала, получаемого в космосе.

Например, при зонной плавке, используемой для выращивания кристаллов, существует поверхность раздела между жидкостью и находящимся над ней насыщенным паром. Вдоль этой поверхности возможно изменение температуры, а поскольку от нее зависит поверхностное натяжение, то в этих условиях может возникнуть конвекционное течение. Когда перепад температуры начинает превышать некоторую критическую величину, в расплаве возникают конвекционные токи, носящие колебательный характер и ведущие к неравномерному поступлению примеси в зону кристаллизации. В результате примесь внутри кристалла будет распределена также неоднородно (явление полосчатости). По сравнению со свободной конвекцией, интенсивность которой зависит от уровня ускорений на космическом аппарате, преодоление термокапиллярных течений требует принятия других мер (ограничение величины перепадов температуры и т. д.).

Рассмотренные выше экспериментальные и теоретические исследования процессов переноса вещества в условиях, близких к невесомости, относились к расплавам. Однако в этих условиях и для газообразного состояния вещества процессы переноса могут иметь свои особенности. Приведем в качестве примера также эксперимент на станции «Скайлэб», в котором исследовалось выращивание кристаллов полупроводников — селенида и теллурида германия — из газовой фазы. Этот метод основан на том, что на горячем конце запаянной ампулы вещество, находящееся в газовой фазе (иодистый германий), реагирует с поверхностью твердого исходного материала, а затем под действием перепада температуры диффундирует в сторону холодного конца ампулы. Там, в более холодной зоне, происходят конденсация паров на затравочном кристалле и образование нужных кристаллов. Ожидалось, что скорость массопереноса продукта в газовой фазе будет определяться чисто диффузионными процессами. В земных условиях эта скорость значительно возрастает из-за конвекции. Этот эксперимент показал, что фактическая скорость переноса массы в космических условиях ниже наблюдаемой на Земле, но выше величины, рассчитанной в чисто диффузионном приближении.

Сходные результаты получены также в эксперименте, поставленном при совместном полете кораблей «Союз» и «Аполлон». Это расхождение в скоростях диффузионного переноса можно связать с особенностями химических реакций в газообразном состоянии, которые не учитываются в существующих методах расчета.

Механика жидкости. Рассматривая механику жидкости в невесомости как один из разделов теоретических основ космического производства, необходимо изучить вопросы поверхностного натяжения и смачивания, капиллярные эффекты, устойчивость форм жидкости и поведение содержащихся в ней включений — газовых пузырей, твердых частиц и т. д. Для качественного исследования этих вопросов удобно проводить на борту космических аппаратов эксперименты с использованием воды и водных растворов.


Перейти на страницу:
Изменить размер шрифта: