Высокие равнины

Высо'кие равни'ны (High Plains), плато в центральной части США. Занимает большую (среднюю) часть Великих равнин, между р. Уайт-Ривер (приток р. Миссури) и р. Канейдиан (приток р. Арканзас). От соседних участков Великих равнин отделено уступами. Сложено известняками и песчаниками палеозойского возраста, перекрытыми лёссовидными суглинками, реже — песками. Поверхность плоская, понижается с З. на В. от 1700 до 500 м, прорезана долинами рек Платт, Арканзас и другими, вблизи которых глубоко расчленена густой овражной и речной сетью. Разнотравно-ковыльная, сильно изменённая выпасом скота степь на каштановых почвах. Район экстенсивного пастбищного скотоводства. В долинах рек — орошаемое земледелие.

Высокий

Высо'кий, посёлок городского типа в Харьковском районе Харьковской области УССР, в 15 км к Ю.-З. от Харькова. Железнодорожная станция Октябрьская. 16 тыс. жителей (1969). Население работает на предприятиях Харькова.

Высокий Атлас

Высо'кий А'тлас, горная цепь в системе Атласских гор (см. Атлас) на С.-З. Африки, в Марокко. Протяжённость около 700 км (от мыса Гир на Атлантический океан до восточных границ страны). Западная часть В. А. — преимущественно известняковые плато, окружающие центральный массив из гранитов и сланцев высотой 3—4 тыс. м (г. Тубкаль, 4165 м). К В. высоты резко снижаются (до 1500 м). Восточная часть В. А. — короткие мергелисто-известняковые хребты, разбитые сбросами и отделённые друг от друга депрессиями. На северо-западных наветренных влажных склонах гор до высоты 1500 м — леса из вечнозелёных жестколистных оливкового и рожкового деревьев, олеандра с примесью туи, до 1800 м — из каменного дуба, до 3000 м — заросли можжевельников, выше — остепнённые луга; на более сухих южных и восточных склонах — заросли берберской «туи» (сандарака) и можжевельника.

Высокий Тауэрн

Высо'кий Та'уэрн (Hohe Tauern), горный хребет в Восточных Альпах, в Австрии. Простирается с З. на В. более чем на 120 км. Состоит из нескольких массивов высотой до 3797 м (г. Гросглокнер) с альпийскими формами рельефа. В западной части многочисленны каровые и долинные ледники. С северных склонов В. Т. берут начало многие правые притоки р. Зальцах (бассейн р. Инн), с южных — левые притоки р. Драва. Осевая зона В. Т. сложена древними гранитами и гнейсами. До высоты 1800—2000 м — хвойные леса, выше — заросли кустарников и луга. Через В. Т. на высоте около 1200 м проложен туннель железной дороги Зальцбург — Клагенфурт.

Высоких напряжений техника

Высо'ких напряже'ний те'хника, раздел электротехники, охватывающий изучение и применение электрических явлений, протекающих в различных средах при высоких напряжениях. Высоким считается напряжение 250 в и выше относительно земли. Экономически целесообразно строить мощные электрические станции вблизи мест добычи топлива или на больших реках и получаемую электрическую энергию передавать (например, по проводам) в промышленные районы, иногда значительно удалённые от основных источников энергии. Передача больших электрических мощностей на далёкие расстояния при низком напряжении из-за потерь практически невозможна, поэтому с развитием электрификации растут и рабочие (номинальные) напряжения электрических сетей. В СССР особенно быстро номинальные напряжения росли в период осуществления ГОЭЛРО и в середине 50-х гг. (рис. 1), при создании Единой высоковольтной сети (ЕВС) Европейской части страны.

  В развитии В. н. т. большую роль сыграли русские и советские учёные. В России первая лаборатория высокого напряжения была создана профессором М. А. Шателеном при Петербургском политехническом институте в 1911. В Советском Союзе работают десятки крупных лабораторий при научно-исследовательских институтах, заводах и вузах, изучающих проблемы В. н. т. Большие работы в этой области проведены Б. И. Угримовым, А. А. Смуровым, А. А. Горевым, А. А. Чернышёвым, Л. И. Сиротинским, В. М. Хрущовым и руководимыми ими научными коллективами, а также научной школой, возглавлявшейся академиком А. Ф. Иоффе. Издано большое количество монографий и учебников по В. н. т.

  Основной проблемой В. н. т. является создание надёжной высоковольтной изоляции, которая имела бы минимальные конструктивные размеры и малую стоимость. Каждая изоляционная конструкция обладает определёнными длительной и кратковременной электрическими прочностями, значения которых определяют габариты и стоимость изоляции (см. Изоляция электрическая). Кратковременная электрическая прочность изоляции характеризует её способность выдерживать кратковременные повышения напряжения (перенапряжения), возникающие в электрических системах при различных переходных процессах (например, при включении или отключении отдельных элементов системы, при коротких замыканиях и т.д.) либо при ударах молнии в линии электропередачи или другие токоведущие части. Перенапряжения первого вида называются внутренними и обычно продолжаются сотые доли сек. Перенапряжения второго вида называются грозовыми, их длительность не превышает десятитысячных долей сек.

  Наиболее распространённым диэлектриком в электрических системах служит обычный воздух, окружающий провода линий электропередачи и другие элементы внешней изоляции электрических систем (например, опорные, проходные и подвесные изоляторы). Удельная электрическая прочность воздуха (отношение пробивного напряжения к расстоянию между электродами) резко падает с увеличением расстояния между электродами (рис. 2), поэтому габариты линий электропередачи должны расти быстрее, чем растёт номинальное напряжение. Это обстоятельство может положить предел увеличению рабочих напряжений воздушных линий электропередачи, который, по-видимому, составит около 1500 кв по отношению к земле (это соответствует номинальному напряжению 2000 кв для трёхфазных линий переменного тока и 3000 кв для линий постоянного тока). При таком напряжении по каждой линии можно передать электрическую мощность нескольких Гвт на расстояние порядка 1000 км и более. Дальнейшее повышение передаваемой мощности будет, по-видимому, достигнуто путём применения линий электропередачи нового типа, среди которых наиболее перспективны газонаполненные кабели, сверхпроводящие, или криогенные, кабельные линии, а также передача электрической энергии по волноводам при частотах порядка десятков Ггц.

  Электрическая прочность воздуха сильно зависит от продолжительности воздействия только при малых отрезках времени (меньше 100 мксек), поэтому она приблизительно одинакова при грозовых и внутренних перенапряжениях. Это положение справедливо для сухих и чистых изоляторов, находящихся в воздушной среде. Если же поверхность изоляторов загрязнена и увлажнена дождём или туманом, то электрическая прочность изолятора снижается и зависит от длительности воздействия напряжения. Поэтому воздушные промежутки на линиях электропередачи (например, расстояние между проводом и землёй или элементами опоры) определяются только перенапряжениями, а количество и тип изоляторов, на которых подвешиваются провода, — также и рабочим напряжением. Величина перенапряжений, степень загрязнения изоляторов, сила ветра, который отклоняет провода от нормального положения и приближает их к опоре, меняются в широких пределах. Поэтому выбор изоляции для линий электропередачи осуществляется с применением методов математической статистики.


Перейти на страницу:
Изменить размер шрифта: