Mary arrayed all the pairs, photographed them, and printed out the photo on an Epson inkjet printer. She then started labeling the pairs, beginning with the longest, and working her way to the shortest: 1, 2, 3…

It was straightforward work, the kind of exercise she’d put her cytogenetics students through each year. Her mind wandered a bit while she was doing it: she found herself thinking about Ponter and Adikor and mammoths and a world without agriculture and…

Damn!

She’d obviously screwed up somehow, since Ponter’s X and Y chromosomes were the twenty-fourth pair, not the twenty-third.

Unless…

My God, unless he actually had three chromosome 21s—in which case he, and presumably all his people, had what in her kind produced Down’s syndrome. That made some sense; those with Down’s had an array of facial morphologies that differed from other humans, and—

Good grief, thought Mary, could it be so simple? Down’s sufferers did have an increased incidence of leukemia…and wasn’t that what Ponter said had killed his wife? Also, Down’s syndrome was associated with abnormal levels of thyroid hormones, and those were well-known to affect morphology—especially facial morphology. Could it be that Ponter’s people all had trisomy 21—one small change, manifesting itself slightly differently in them than it did in Homo sapiens sapiens, accounting for all the differences between the two kinds of humans?

But no. No, that didn’t make sense. Principal among Down’s effects, at least in Homo sapiens sapiens, was an under development of muscle tone; Ponter’s people had exactly the opposite condition.

And, besides, Mary had spread out an even number of chromosomes in front of her; Down’s syndrome resulted from an odd number. Unless she’d accidentally brought some chromosomes in from another cell, it appeared that Ponter did indeed have twenty-four pairs, and…

Oh, my God, thought Mary. Oh, my God.

It was even more simple than she’d thought.

Yes, yes, yes!

She had it!

She had the answer.

Homo sapiens sapiens had twenty-three pairs of chromosomes. But their nearest relatives, at least on this Earth, were the two species of chimpanzees, and—

And both species of chimps had twenty-four pairs of chromosomes.

Genus Pan (the chimps) and Genus Homo (humans of all types, past and present) shared a common ancestor. Despite the popular fallacy that humans had evolved from apes, in fact, apes and humans were cousins. The common ancestor—the elusive missing link, not yet conclusively identified in the fossil record—had existed, according to studies of the genetic divergence between humans and apes, something like five million years ago in Africa.

Since chimps had twenty-four pairs of chromosomes and humans had twenty-three, it was anyone’s guess as to what number the common ancestor had possessed. If it had had twenty-three, well, then, sometime after the ape-human split, one chromosome must have become two in the chimp line. If, on the other hand, it had had twenty-four, then two chromosomes must have fused together somewhere along the Homo line.

Until today—until right now, until this very second—no one on Mary’s Earth had known for sure which scenario was correct. But now it was crystal clear: common chimps had twenty-four pairs of chromosomes; bonobos—the other kind of chimp—had twenty-four as well. And now Mary knew that Neanderthals also had an even two dozen. The consolidation of two chromosomes into one had happened long after the ape-human split; indeed, it had happened sometime after the Homo branch had bifurcated into the two lines she was now studying, only a couple of hundred thousand years ago.

That was why Ponter’s people still had the huge strength of apes, rather than the puniness of humans. That was why they had ape physiognomy, with browridges and no chins. Genetically, they were apelike, at least in chromosome count. And something about the fusing of two chromosomes—it was numbers two and three, Mary knew, from studies of primate genetics she’d read years before—had caused the morphological differences that gave rise to the adult human form.

Indeed, the particular cause of the differences was easy enough to identify: it was neoteny, the retention into adulthood of childhood characteristics. Baby apes, baby Neanderthals, and baby Gliksins all had similar skulls, with vertical, ridgeless foreheads, and no particular protrusion of the lower face. As the other kinds grew, their skull shapes changed. But Mary’s kind alone retained their childlike crania into adulthood.

But Ponter’s people did mature cranially. And the differing chromosome count might be the cause.

Mary pressed her two hands together in front of her face. She had done it! She had found what Jock Krieger wanted, and—

And… my God.

If the chromosome counts differed, then Neanderthals and her flavor of Homo sapiens weren’t just different races, or even just subspecies of the same species. They were fully separate species. No need to double up the “wisdom” part in Homo sapiens sapiens to distinguish Mary’s kind from Ponter’s, for Ponter’s people couldn’t possibly be Homo sapiens neanderthalensis. Rather, they were clearly their own specific tax on, Homo neanderthalensis. Mary could think of some paleoanthropologists who would be thrilled by this news—and others who would be extremely pissed off.

But…

But…

But Ponter belonged to another species! Mary had seen Showboat when it was on stage in Toronto; Cloris Leachman had played Parthy. She knew that miscegenation was once a big issue, but…

But miscegenation wasn’t the appropriate term for a human mating with something from outside her own species—not that Ponter and Mary had done that, of course.

No, the appropriate term was…

My God, thought Mary.

Was bestiality.

But…

No, no.

Ponter wasn’t a beast. The man who had raped her—Mary’s conspecific, a member of Homo sapiens—had been a beast. But Ponter was no animal.

He was a gentleman.

A gentle man.

And, regardless of chromosome count, he was a human being—a human being she was very much looking forward to seeing again.

Chapter Thirteen

Finally, after three days, the specialists from the Laboratory Centre for Disease Control and the Centers for Disease Control and Prevention—the comparable U.S. agency—agreed that Ambassador Tukana Prat and Envoy Ponter Boddit were free of infection and could leave quarantine.

Ponter and Tukana, accompanied by five soldiers and Dr. Montego, trudged down the mining tunnel to the metal-cage elevator, and made the long ride to the surface. Apparently, word had preceded them that they were on the way up; a large number of miners and other Inco workers had assembled in the huge room up top that contained the elevator station.

“There is a crowd of reporters waiting in the parking lot,” said Hélène Gagné. “Ambassador Prat, you’ll need to make a brief statement, of course.”

Tukana lifted her eyebrow. “What sort of statement?”

“A greeting. You know, the usual diplomatic thing.”

Ponter had no idea what that meant, but, then again, it wasn’t his job. Hélène led Tukana and him out of the large room and through the doors into the Sudbury autumn. It was at least two degrees hotter than the world Ponter had left behind, maybe more, but, of course, three days had passed while they were underground; the difference in temperature didn’t necessarily mean anything.

Still, Ponter shook his head in amazement. He’d never exited this place while conscious before; the only previous time he’d come up from the mine, he’d been knocked out with a head wound. But now he had a chance to really see the giant mining site, the great tear in the ground these humans had made; the huge stretches of land from which all trees had been cleared; the vast—“parking lot,” they called it, covered with hundreds of personal vehicles.


Перейти на страницу:
Изменить размер шрифта: