ТЕМА НОМЕРА: Реформирование матрицы
Автор: Леонид Левкович-Маслюк
Где-то в конце 1980-х или начале 1990-х я читал в "Независимой газете" обзор событий в мире книг. Автор отмечал, что на прилавках появилось оригинальнейшее сочинение по истории древнего мира, которое написал Фоменко - "но это не тот Фоменкохъ [Видимо, режиссер]. И не тот Фоменко[Видимо, шоумен]. Этот Фоменко - математик, который…", ну и так далее.
Сегодня любой российский читатель сразу поймет, о чем было "и так далее". Популярность многотомных трактатов Фоменко и его соавторов на исторические темы столь велика (особенно среди людей, далеких от сферы гуманитарного знания), что нашего собеседника можно представить так: это тот Фоменко. Однако спрашивать его мы будем совсем не о "том". Речь пойдет только о математике.
Анатолий Фоменко с блеском защитил докторскую диссертацию в 1972 году, когда ему было лишь 26 лет, - на основе серии работ, где в весьма общей и новой постановке решалась знаменитая задача Плато о минимальных поверхностях. Его дальнейшая карьера в математике тоже была успешной, и сейчас Фоменко, академик РАН, лауреат Государственной премии РФ, заведует кафедрой дифференциальной геометрии и приложений на мехмате МГУ и одновременно - отделением математики мехмата. Последняя должность считается очень почетной, в разное время ее занимали крупнейшие и самые уважаемые математики страны, в том числе Андрей Николаевич Колмогоров и Павел Сергеевич Александров. Собственно, работа Фоменко в этой должности и стала поводом для нашей встречи - до редакции, тесно связанной с МГУ вообще и с мехматом в частности, дошла информация о том, что затевается серьезная реформа программы и всего стиля обучения на мехмате.
А мехмат - это по-прежнему математическая школа номер один в России. А математика - дело хоть на вид и безобидное, но от математики (как свидетельствуют обе версии истории, стандартная и нестандартная) слишком многое зависит в жизни общества, чтобы не обращать на нее внимания.
Функции Морса - основной объект теории Морса, названной в честь ее создателя, американского математика первой половины ХХ века Марстона Морса (Marston Morse). Эти функции помогают представить сложные геометрические структуры в пространствах высокой размерности в виде совокупности простых "строительных блоков" - так называемых ручек, каждая из которых отвечает "критической точке", где производные функции Морса обнуляются. Теория Морса оказалась очень эффективной и для изучения кратчайших путей в "искривленных пространствах". Этот аппарат нашел множество применений в теоретической физике, а в последние годы его активно пытаются использовать в задачах компьютерной геометрии и компьютерного зрения. На рисунке - множество критических седловых точек функции Морса, заданной на трехмерном пространстве. Поведение функции около критической точки хорошо изображается "колоколом" с двумя "языками".
Анатолий Тимофеевич, вы действительно взялись за реформу преподавания на мехмате?
- Во-первых, не я один взялся, а во-вторых - да, на мехмате будут реформы, как и в МГУ в целом.
Пока что ни о каких реформах высшего образования, кроме внедрения болонской системы, слышно не было.
- До сих пор, слава богу, нам благополучно удавалось отказываться от введения этой системы. Но чиновники продолжают настаивать, чтобы МГУ (включая, конечно, мехмат) начинал этим заниматься. Поэтому мы приступаем к реформе, но собираемся ее использовать в основном для нововведений в содержание образования.
Каких именно?
- В первую очередь надо ввести в нашу программу ряд современных научных направлений, обновить лекционные курсы, которые были созданы довольно давно, в 1950–60-е годы. Все понимают, что их давно пора обновлять, и мы с большим удовольствием это сделаем. Это будет серьезная работа, и она начнется с построения большой матрицы. По горизонтали пойдут годы обучения и основные потоки (математиков и механиков), а по вертикали отложим основные курсы (обязательные и специальные) с подробным делением по темам. На пересечении строк и столбцов будет отмечено, какие темы по данному курсу читают в данном семестре, после чего станет видна общая картина: объем материала по каждому предмету, зависимость курсов друг от друга и так далее. Просто читая распечатки сотен учебных программ, невозможно осмыслить весь объем преподавания на мехмате. Матрица, думаю, нам в этом сильно поможет.
Будут ли структурные изменения?
- Да, наша вторая задача - создание экспериментальных групп, междисциплинарных, межфакультетских проектов. Одна такая группа, "экономический поток", действует уже много лет. Ее выпускники - математики, отчасти ориентированные на приложения в экономике. Как показал опыт, такая ориентация полезна в практической жизни. Аналогичная программа реализована и на кафедре теории вероятностей, там есть поток "Актуарная математика" (его возглавляет Альберт Ширяев[Один из наиболее известных в мире специалистов по стохастической финансовой математике.]), очень популярный у студентов. Междисциплинарные проекты существуют или создаются еще на нескольких кафедрах. Например, у нас на кафедре много лет ведется совместный проект с биологами и физиками, посвященный анализу форм длинных молекул. Там масса задач - геометрических, статистических, даже теория симметрий и кристаллография всплывают по разным поводам. Прикладной аспект проекта - материалы, обладающие памятью формы. Такие материалы уже существуют, они даже применяются в медицинских имплантах, и это активное поле исследований. Заманчиво было бы, например, изготовить проволочную конструкцию, потом очень компактно ее уложить, смять - а при попадании в специфические условия (например, на космическую орбиту) она бы восстановила прежнюю форму. У многих биологических молекул есть подобные свойства, своего рода встроенная память. Изучение геометрии этих молекул - важная задача. Оказывается, анализ их формы можно свести к исследованию критических точек функций Морса (см. врезку. - Л.Л.-М.), зависящих от огромного количества переменных.