Магнетокалорический эффект

Магнетокалори'ческий эффе'кт, изменение температуры магнетика при адиабатическом изменении напряжённости магнитного поля Н, в котором находится магнетик. С изменением поляна dH совершается работа намагничивания dА = JdH (J намагниченность). По первому началу термодинамики dА = dQ — dU, где dQ — сообщенное магнетику количество теплоты (оно равно нулю в условиях адиабатичности), dU изменение внутренней энергии магнетика. Таким образом, при dQ = 0 работа совершается лишь за счёт изменения внутренней энергии (dA = —dU), что приводит к изменению температуры магнетика, если его внутренняя энергия зависит от температуры Т. В пара- и ферромагнетиках с ростом Н намагниченность J увеличивается, то есть растет число атомных магнитных моментов (спиновых или орбитальных), параллельных Н. В результате энергия пара- и ферромагнетиков по отношению к полю и их внутренняя энергия обменного взаимодействия уменьшаются. С другой стороны, внутренняя энергия пара- и ферромагнетиков увеличивается с увеличением Т. Поэтому на основании Ле Шателье — Брауна принципа при намагничивании должно происходить нагревание пара- и ферромагнетиков. Для ферромагнетиков этот эффект максимален вблизи точки Кюри, для парамагнетиков М. э. растет с понижением температуры. При адиабатическом уменьшении поля происходит частичное или полное (при выключении поля) разрушение упорядоченной ориентации моментов за счёт внутренней энергии, к охлаждению магнетика (См. Магнитное охлаждение).

  Лит.: Вонсовский С. В., Магнетизм, М., 1971.

  С. В. Вонсовский.

Магнетон

Магнето'н, единица измерения магнитного момента, принятая в атомной и ядерной физике.

  Магнитный момент атомных систем в основном обусловлен движением электронов и их спином и измеряется в магнетонах Бора:

  

Большая Советская Энциклопедия (МА) i-images-141876699.png
 эрг/гс  (1)

  Здесь

Большая Советская Энциклопедия (МА) i-images-157467196.png
 Планка постоянная, е и m — абсолютные величина заряда и масса электрона, с — скорость света.

  В ядерной физике магнитные моменты измеряются в ядерных магнетонах, отличающихся от mБ заменой массы электрона m на массу протона М:

  

Большая Советская Энциклопедия (МА) i-images-190845300.png
 эрг/гс  (2)

  Физический смысл величины mБ легко понять из полуклассического рассмотрения движения электрона по круговой орбите радиуса r со скоростью v. Такая система аналогична витку с током, сила I которого равна заряду, деленному на период вращения: I = ev / 2pr. Согласно классической электродинамике, магнитный момент витка с током, охватывающего площадь S, равен в системе Гаусса (см. СГС система единиц) m = IS/c = evr / 2c, или m = eMl / 2mc, где Ml = mvr — орбитальный момент количества движения электрона. Если учесть, что по квантовым законам орбитальный момент Ml электрона может принимать лишь дискретные значения, кратные постоянной Планка, Ml = l

Большая Советская Энциклопедия (МА) i-images-181152151.png
, где l = 0, 1, 2,..., то получится следующее выражение:

  

Большая Советская Энциклопедия (МА) i-images-176142035.png
  (3)

  Таким образом, магнитный момент электрона, находящегося в состоянии с орбитальным моментом Ml, кратен М. Бора. Следовательно, в данном случае mБ играет роль элементарного магнитного момента — «кванта» магнитного момента электрона.

  Помимо орбитального момента количества движения Ml, обусловленного вращением, электрон обладает собственным механическим моментом — спином, равным s = 1/2 (в единицах

Большая Советская Энциклопедия (МА) i-images-171470075.png
). Спиновый магнитный момент ms = 2mБs, то есть в 2 раза больше величины, которую следовало ожидать на основании формулы (3), но так как s = 1/2, то ms электрона также равен М. Бора: ms = mБ. Этот факт непосредственно вытекает из релятивистской квантовой теории электрона, в основе которой лежит Дирака уравнение.

  Ядерный М. имеет аналогичный смысл: это магнитный момент, создаваемый движением протона (внутри ядра) с орбитальным моментом l = 1. Однако собственные магнитные моменты ядерных частиц — протона и нейтрона, обладающих, как и электрон, спином 1/2, значительно отличаются от тех значений, которые они должны были бы иметь по теории Дирака. Аномальные магнитные моменты этих частиц обусловлены их сильным взаимодействием.

  Д. В. Гольцов.

Магнетосопротивление

Магнетосопротивле'ние, магниторезистивный эффект, изменение электрического сопротивления твёрдого проводника под действием внешнего магнитного поля. Различают поперечное М., при котором электрический ток течёт перпендикулярно магнитному полю, и продольное М. (ток параллелен магнитному полю). Причина М. — искривление траекторий носителей тока в магнитном поле. У полупроводников относительное изменение сопротивления Dr/r в 100 — 10 000 раз больше, чем у металлов, и может достигать сотен %. М. относится к группе гальваномагнитных явлений. М. используется для исследования электронного энергетического спектра и механизма рассеяния носителей тока кристаллической решёткой, а также для измерения магнитных полей.

  Лит.: Лифшиц И. М., Азбель М. Я., Каганов М. И., Электронная теория металлов, М., 1971; Блатт Ф., Физика электронной проводимости в твердых телах, пер. с англ., М., 1971; Ансельм А. И., Введение в теорию полупроводников, М. — Л., 1962.

  Э. М. Эпштейн.


Перейти на страницу:
Изменить размер шрифта: