Читая каменную летопись Земли... i_020.jpg
Рис. 5. Перенос осадочного материала в береговой зоне и прилегающей части шельфа в различных гидродинамических условиях (Swift, 1975 г.) 1 — баровые пески; 2 — осадки приливно-отливной равнины; 3 — шельфовые наносы; 4 — плейстоценовый субстрат.

Как известно, штормовой режим характерен для умеренных и высоких широт. Поэтому именно здесь, на шельфе, чаще всего попадаются участки дна с застывшими песчаными волнами и обширные поля подводных дюн. Так, они встречаются на атлантическом шельфе США, в Аргентине перед эстуарием Байя-Бланка (провинция Буэнос-Айрес). Гребни подводных дюн, поднимающиеся над окружающим ложем на высоту до 0,6 м, вытянуты в форме дуг поперек эстуария Байя-Бланка. Склоны песчаных волн, обращенные к суше, довольно пологие (около 4°), тогда как со стороны океана они заметно круче (11–16°, иногда даже до 30°). В данном случае форма и размеры подводных дюн определяются скоростью отливных течений. Там, где они стремительнее, подводный вал достигает большей высоты. За год, согласно проведенным измерениям, песчаная «волна» мигрирует примерно на 30 м.

На открытом шельфе промежутки между отдельными песчаными грядами значительно шире, чем в эстуариях, и нередко превышают 2 км. Более тонкий песок аккумулируется здесь на стороне гряды, обращенной к океану.

На участках, где у самого дна действуют слабые, но устойчивые течения, часто наблюдаются эрозионные борозды. Если на пути течения встречается небольшое препятствие, например камень, за ним возникает борозда, напоминающая след метеорита в ночном небе. Это так называемые sole marks — одиночные знаки течений, встречающиеся на дне Северного и Балтийского морей. В зоне действия более сильных течений наблюдаются разнообразные знаки ряби. По мере увеличения скорости движения воды мелкая рябь превращается в мегарябь (крупная рябь с высотой гребней до 60 см и расстоянием между ними от 12 до 15 м), а эта последняя переходит, в свою очередь, в песчаные валы и дюны. Известны также знаки специфической формы, например «хвосты комет» и др.

Совершенно особые образования могут возникать в прибрежной зоне тропических стран. Это так называемые иловые холмы, описанные впервые у побережья Суринама, а затем и у Малабарского берега Индостана в Аравийском море. Их высота обычно превышает 5 м при размерах (50–60)×(10–20) км. Они ориентированы по косой относительно береговой линии, но в то же время вытянуты в своего рода цепочку. Иловые холмы сложены тонкими, в основном глинистыми илами полужидкой консистенции, легко взмучиваемыми при любых движениях в водной среде. Эти подводные отмели играют роль барьеров, принимающих на себя удары океанских волн, под воздействием которых они начинают течь в сторону побережья, где граничат с приливными площадками и мангровыми зарослями. В результате взмучивания концентрация глинистой взвеси в морской воде над иловой банкой может достигать нескольких граммов на литр. Особенно велика она во время прилива и отлива. Подсчитано, что за год вдоль побережья Суринама вместе с иловыми банками перемещается от 15–106 до 65–106 м3 осадков. Можно сказать, что иловые холмы занимают в прибрежной части шельфа тропических стран примерно то же место, что и песчаные подводные «волны» и дюны на шельфах в умеренной зоне. При этом они играют ту же роль, гася частично энергию волн и приливно-отливных течений и защищая таким образом побережье от абразии.

Бездонные водовороты и мутьевые облака

Анализ снимков поверхности океана, сделанных со спутников, позволил обнаружить явления, о которых до той поры ученые имели весьма отдаленное представление. Одним из них оказались гигантские водовороты — ринги, наблюдаемые в определенные сезоны. Так, ринги диаметром в несколько километров наблюдались близ южной оконечности Африки, в полосе действия течения Агульяс. Аналогичные образования наблюдались в Северной Атлантике в зоне действия Гольфстрима. Ринги образуются при завихрениях крупных струй поверхностных океанских течений в сезоны, когда происходит заметное ослабление их скорости.

Приборы, установленные на дне глубоководной впадины Сом в районе частого зарождения рингов, зафиксировали значительное и периодическое ускорение движения воды в придонном слое, которое было охарактеризовано как глубоководный шторм. Последние, в частности, наблюдались в осенне-зимний сезон 1985/86 г., когда возросшая гидродинамическая активность у дна продолжалась от 2 до 8 сут. Затем наступала фаза относительного покоя, в течение которого скорость движения воды снижалась до 1–5 см/с. Когда же вновь разыгрывался глубоководный шторм, она возрастала до 10–22 см/с. Было высказано предположение, что зафиксированные у дна аномалии, названные штормами, связаны с образованием на поверхности океана гигантских рингов. «Корни» этих водоворотов захватывают всю толщу воды и ощущаются у самого дна, на глубинах до 5 км и более. Впрочем, описываемые явления еще не получили однозначного толкования, а количество наблюдавшихся подводных штормов пока невелико. Ажиотация воды в придонном слое во время «шторма» приводит к взмучиванию части рыхлого осадка, выстилающего дно. Замеры показали, что концентрация взвеси в двухметровом слое воды над ложем нередко превышала 5000 мг/л. Максимальное содержание взвеси в воде фиксировалось в течение нескольких часов, а общее количество взмученных частиц в расчете на 1 см2 дна достигало 25 тыс. мг/л [Gross et al., 1988].

Выяснилось, что во многих районах океана у дна почти постоянно существует так называемый нефелоидный слой, т. е, слой воды, обогащенный осадочными частицами. Их концентрации здесь на 1–2 порядка выше, чем в остальной водной толще, исключая поверхностный фотический горизонт, в котором сосредоточена большая часть живых существ, главным образом фотосинтезирующих планктонных организмов. Чтобы установить распределение взвешенных частиц, с разных горизонтов (интервалов глубин) отбирают батометрами пробы воды, а затем в лаборатории на борту судна с помощью нефелометра, определяющего степень рассеивания света в среде, оценивают количественное содержание в ней взвеси. Последнюю можно выделить, пропуская воду через фильтры. Это дает возможность исследовать минеральный и химический состав взвешенного материала.

Долговременные наблюдения в океане с использованием специальных седиментационных ловушек, закрепленных на тросе (заякоренном на дне и поддерживаемом в воде с помощью буя), подтвердили существование двух основных нефелоидных слоев — поверхностного и придонного. Облака взвеси в них, однако, распространены отнюдь не равномерно. Как выяснилось, наиболее высокие концентрации взвешенных частиц фиксируются в западных районах Атлантического и Индийского океанов в полосе действия поверхностных пограничных течений — Гольфстрима, Гвианского, Агульянс и Сомалийского. В восточной периферии океанов, находящейся под воздействием пассатов и примыкающей к территориям с засушливым, а то и с сухим, аридным климатом, поверхностный и особенно придонный нефелоидные слои выражены значительно слабее. Облака взвеси, в основном органического генезиса, наблюдаются здесь в полосе устойчивого подъема глубинных вод, или апвеллинга, где происходит бурное цветение фитопланктона. Такие участки в виде отдельных пятен или полос располагаются над шельфом (во внешней его части) и над прилегающими участками континентального склона. Эти «пятна» смещаются во времени, меняют форму, а нередко и рассасываются в периоды ослабления подтока глубинных вод. Однако, когда последний снова возобновляется, концентрации планктона, а вместе с тем и взвеси в воде возрастают на несколько порядков по сравнению с соседними районами океана.

Более детальные исследования последних лет показали, что в составе приповерхностного нефелоидного слоя обособляются области, с которыми связаны устойчивые потоки взвешенных частиц или часто наблюдаемые облака мути. Происхождение некоторых из них до сих пор остается загадкой. Например, к северу от острова Андрос (Багамские острова) в поверхностном водном слое неоднократно отмечалось появление так называемых молочных облаков [Shinn et al., 1989], прекрасно видных на аэрофотоснимках. Размеры этих облаков достигают нескольких десятков километров в диаметре. Исследование проб воды показало, что они образованы тончайшей карбонатной взвесью в концентрациях до 10–20 мг/л. До сих пор трудно определить, связана ли эта муть с эрозией карбонатных отмелей острова Андрос, или речь идет о выделениях кальцита из воды, пересыщенной карбонатом кальция.


Перейти на страницу:
Изменить размер шрифта: