Повреждение ассимиляционного аппарата проявляется в виде постепенного изменения окраски. Сначала листья становятся серебристыми и глянцевитыми, затем хлоротичными с некротическими участками. Кончики листьев обесцвечиваются и становятся белыми. Изучение поврежденных листьев винограда и петунии выявило общую закономерность: озон оказывает преимущественное влияние на столбчатую паренхиму листьев. Первым симптомом внутриклеточного повреждения было разрушение хлоропластов и их скопление в общую гомогенную массу. У сои под влиянием озона мембраны хлоропластов, а также эндоплазматического ретикулума и митохондрий обнаруживают большее сродство к красителям, нежели мембраны неповрежденных растений.

Эти нарушения в структуре хлоропластов сказываются на интенсивности процесса фотосинтеза. Скорость ассимиляции существенно снижалась у подсолнечника после обработки его озоном. Исследователями показано, что самые первые нарушения фотосинтетического аппарата листьев гороха, находящегося в атмосфере озона, приводят к блокированию реакций фотосинтетического фосфорилирования и торможения электронного транспорта. Позднее отмечались нарушения в пигмент-белковом комплексе.

Японские исследователи пришли к заключению, что озон влияет не только на фотосинтез, но и на распределение ассимилятов. По мнению большинства ученых, первичными мишенями при воздействии на растения озона являются мембраны, проницаемость которых под влиянием фитотоксиканта резко нарушается. Действительно, обработка петунии озоном приводит к значительному ускорению выхода из клеток электролитов. Этот эффект исследователи рассматривают в качестве наиболее чувствительного показателя влияния озона на растения. Скорость выхода ионов калия и других электролитов, по их мнению, может служить в качестве количественного теста для определения чувствительности растений к озону.

Изменения свойств мембран выявились и в экспериментах по обработке озоном мембран микросом, выделенных из семядолей фасоли. По данным рентгеноструктурного анализа, эта обработка приводит к переходу от жидкокристаллической к гелевой структуре мембран микросом.

Озон оказывает влияние на дыхание. Так, например, при некоторых концентрациях этого токсиканта воздействие его в течение 120 минут приводит к ослаблению дыхания подопытных растений на 60 %.

Результатом всех этих изменений является ослабление темпов роста и снижение урожайности сельскохозяйственных культур. Потери урожая картофеля под действием некоторых концентраций озона могут достигать 50 %, а люцерны — 33–42 %. У декоративного растения петунии фитотоксикант вызывает уменьшение диаметра и сырого веса цветков, причем токсичность действия этого газа возрастает по мере увеличения экспозиции.

Фтор и его соединения

Фтор выбрасывается алюминиевыми и криолитовыми заводами, предприятиями, производящими фосфорные удобрения, эмалевые и керамические изделия. Из дымовых труб и фабричных установок этот элемент выходит в основном в виде фтористого водорода и четырехфтористого кремния, а также в форме пылевых частиц фторида натрия и калия.

Фтор относится к числу сильнейших фитотоксикантов. Его действие на растительные клетки начинается сразу же после инфильтрации внутрь ткани без лаг-фазы. Некоторые промышленные предприятия, загрязняющие окружающую среду фторидами, служат причиной массовой гибели растительности. В штате Флорида (США) фтористые соединения фосфатного завода приводят к накоплению фтора в листьях цитрусовых, что служит причиной замедления роста растений и снижения урожайности.

Каковы же симптомы повреждения растений фтором? Прежде всего, у пораженных растений наблюдается явление хлороза, сопровождающееся отмиранием листьев (цитрусовые, хвойные, рис, колеус, яблоня, груша). У хвойных первоначально происходит побеление, а затем потемнение концов игл. При отмирании трети или половины хвоинок последние опадают. Вновь появляющиеся на растении листья отличаются меньшими размерами.

Так, после двухмесячной обработки фтором у апельсиновых деревьев отмечалось снижение площади листьев на 25–35 %. У пихты под влиянием фтора запаздывает образование поверхностного воска на молодой хвое.

Существует пропорциональная зависимость между степенью повреждения листьев у отдельных растений и содержанием в них фторидов. Самыми устойчивыми к фтористому водороду оказались нижние, более старые листья бобовых растений.

Наряду с поражением листового аппарата под влиянием фтора происходит ослабление прироста растений в высоту. У апельсиновых деревьев уменьшение прироста после двухмесячной обработки фтором составило 52 %. Фтор задерживает ростовые процессы у пшеницы, резко подавляет прорастание ее семян, а в концентрации 10-2 м полностью предотвращает прорастание семян вигны. Под влиянием 20-дневной обработки фтористым водородом (концентрация 0,1 мг/м3 воздуха) происходит значительное снижение урожая люцерны, ежи сборной и салата. Газация фтористым водородом в течение суток приводила к торможению цветения и снижению урожая сорго на 33 %, к тяжелым ожогам верхушек листьев тюльпана.

Исследования показали, что ионы фтора, поступившие из воздуха в клетки листьев апельсина, распределяются там неравномерно: большая их часть оказывается во фракции хлоропластов. В хлоропластах ряда объектов (хвои пихты, листьев яблони) отмечены структурные нарушения, которые исследователи относят к числу первичных эффектов фтора. По-видимому, под его влиянием происходит разрушение мембран хлоропластов. Вместе с тем в хлоропластах поврежденных растений падает содержание хлорофилла и каротиноидов. Все эти изменения не могут не сказаться на интенсивности фотосинтеза. Сильное ослабление интенсивности этого процесса под влиянием фтора обнаружено у тополя черного, вяза, двулетних сеянцев сосны обыкновенной и других растений.

Одновременно с ослаблением фотосинтеза в хвое сосны усиливается активность дыхательного процесса как на свету, так и в темноте. У сои под влиянием фтористого водорода также интенсифицируется дыхание, однако энергия дыхательного процесса не запасается в форме энергии макроэргических связей АТФ, а поэтому не может быть использована на процессы жизнедеятельности.

Факторы внешней среды оказывают большое влияние на поражаемость растений фтором. При недостатке влаги в почве, при низкой освещенности и невысокой температуре повреждение сои от фтористого водорода было меньше, чем при ярком освещении, обильном снабжении влагой и при благоприятных температурных условиях. Нетрудно связать действие этих факторов с состоянием устьиц. Факторы, благоприятствующие их закрыванию, повышают устойчивость растений к фтору, ибо растения в этом случае поглощают меньше фитотоксикантов.

Хлор и его соединения

Хлор и хлористый водород попадают в атмосферу при работе титано-магниевых заводов, гальванотехнических цехов, химических предприятий, производящих гербициды, инсектициды, соляную кислоту, органические красители, цемент, суперфосфат, уксусную кислоту, хлорную известь, соду.

Большое количество хлоридов (магния, кальция, натрия) попадает в почву при использовании солей для борьбы с гололедом. Обычно на 1 м2 дорожного покрытия расходуется 50–70 г солей. За зиму в ФРГ на каждый 1 м2 городских улиц попадает от 0,6 до 2,7 кг соли. Неудивительно, что на полуметровой глубине возле тротуара на каждые 100 г почвы химические анализы показали присутствие 600 мг солей. Кроме того, интенсивное засоление почвы хлоридом натрия происходит в местах производства калийных удобрений.

Хлор может поступать в растения и оказывать на них сильное повреждающее действие в различных формах: газообразный хлор, газообразный хлористый водород, соли соляной кислоты и т. д. Десятиминутное воздействие хлора в концентрации 0,75 мг/м3 значительно понижало интенсивность процесса фотосинтеза у пшеницы, овсяницы луговой, тимофеевки луговой. Снижение интенсивности фотосинтеза под влиянием хлора может быть обусловлено повреждением структуры хлоропластов (отслоение и разрывы их оболочек, укрупнение зернистости матрикса, нарушение гранулярно-сетчатой структуры).


Перейти на страницу:
Изменить размер шрифта: