На глубине 800–900 км начинается— нижняя мантия, или «астеносфера» Луны, переход к ней постепенный — отраженных от ее поверхности волн не зафиксировано.
Данных о центральной части Луны пока крайне мало. На московской встрече советских и американских исследователей Луны в июне 1974 г. Г. Латем сообщил важный результат: на записи удара метеорита на расстоянии 168° продольные волны опаздывали на 57 с. Это может означать, что на глубине 1380–1570 км скорость распространения продольных волн упала до 4–5 км/с. На VII Лунной конференции новых подтверждений этого факта не представлялось, так что существование внутреннего ядра в Луне пока не доказано (рис. 8).
Рис. 8. Скоростная модель лунных недр по Латему (1) и Токсоцу (2). У правой шкалы ординат показаны ограничения на размер ядра из сернистого железа (FeS) и чистого железа (Fe)
Ученые Массачусетского технологического института полагают, что для детального расчленения мантии Луны данных пока мало, и ограничиваются средними оценками скоростей распространения сейсмических волн (см. рис. 8). Они. разработали процедуру определения средних скоростей сейсмических волн в толще мантии над очагом приливного лунотрясения. При этом для улучшения отношения сигнал-шум проводилось суммирование стабильных по форме записей сейсмических толчков.
В районе Моря Познанного до глубины 880 км средняя скорость распространения продольных волн в мантии Луны — 7,9 км/с, поперечных — 4,4 км/с; их отношение — 1,8, коэффициент Пуассона — 0,3. В юго-восточной части Моря Дождей средние сейсмические характеристики мантии до глубины 920 км сходные: скорость распространения продольных волн — 8,1 км/с, поперечных — 4 0 км/с, их отношение 2,0, коэффициент Пуассона — 0,33.
Сейсмические наблюдения позволяют определить не только скорости распространения продольных и поперечных волн, но и меру близости реального вещества к модели идеальной упругости — степень поглощения энергии за счет необратимых тепловых потерь на пути пробега сейсмических волн. Такой мерой служит добротность — безразмерная величина, обратная коэффициенту затухания — аналогичная добротности радиосхем: чем она выше, чем дольше звучание.
Сейсмическая добротность лунных пород оценивалась несколькими способами: лабораторным (измерения на образцах, помещенных в вакуум), теоретическим (сравнение сейсмограмм с расчетами), экспериментальным (измерение закона убывания амплитуд на сейсмограммах). В последнем методе рассматривалось ослабление амплитуд сейсмической записи в зависимости от времени, расстояния и частоты. Различные определения дали согласующиеся результаты. По новым данным, выделяется слоистая структура Луны по сейсмической добротности.
В верхнем слое (реголите) величина добротности для продольных волн 100–300, в рассеивающем слое коры — 3000–5000, во всей 500-километровой толще литосферы — 5000 (по некоторым определениям — 7000 — 10 000), глубже добротность падает до значения 3500 (на глубине 600 км), 1400 (950 км) и 1100 (1200 км). В астеносфере Луны добротность по продольным волнам не превышает 500.
По амплитудам поперечных волн сейсмическая добротность верхней 300-километровой толщи оценивается величиной 4000, в слое 500–800 км она уменьшается до 1500, в астеносфере падает еще в 10–15 раз.
Селенофизические поля
Лунные масконы. Детальное изучение поля силы тяжести Луны стало возможно после выведения космических спутников на орбиту искусственных спутников Луны. Наблюдения за орбитами спутников велись с помощью трех наземных станций.
По изменению частоты спутникового передатчика определялись так называемые «лучевые ускорения» — проекции ускорения силы тяжести на направление Земля — спутник (для центральной части видимой стороны Луны эти ускорения соответствовали вертикальной составляющей).
Первые построения картины гравитационного поля Луны были проведены советскими исследователями по результатам полета космического аппарата «Луна-10», в дальнейшем данные уточнялись по наблюдениям за орбитами искусственных спутников серии «Лунар Орбитар», а также на тех участках трасс космических кораблей «Аполлон», где их орбиты вокруг Луны определялись лишь полем ее силы тяжести.
Гравитационное поле Луны оказалось сложнее и неоднороднее земного, поверхность равного потенциала силы тяжести более неровная, и источники аномалий расположены ближе к поверхности Луны. Существенной особенностью лунного поля силы тяжести явились крупные положительные аномалии, приуроченные к круглым морям, которые были названы масконами (от английского — «концентрация масс»). При подлете к маскону скорость спутника возрастает; после пролета спутник слегка притормаживается, при этом высота орбиты меняется на 60 — 100 м.
Вначале были обнаружены масконы в морях видимой стороны: Дождей, Ясности, Кризисов, Нектара, Влажности; их размеры достигали 50 — 200 км (они укладывались в контуры морей), а величины аномалий составляли 100–200 мгал[5]. Аномалия Моря Дождей соответствовала избытку массы порядка (1,5–4,5) х 10-5 массы всей Луны.
Впоследствии были открыты более массивные масконы на границе видимой и обратной сторон в Морях Восточное и Краевое, а также огромный маскон в экваториальной зоне центра обратной стороны Луны. В этом месте моря нет, поэтому маской назван «Скрытым». Его диаметр более 1000 км, масса в 5 раз превышает избыточную массу Моря Дождей. Скрытый маскон способен отклонить на 1 км спутник, летящий на высоте 100 км. Суммарная избыточная масса, соответствующая положительным аномалиям силы тяжести. превышает 10-4 массы Луны. Ряд отрицательных аномалий оказался связанным с лунными горами: Юра, Кавказ, Тавр, Алтай.
Аномалии силы тяжести отражают особенности распределения масс вещества в недрах Луны. Если, например, допустить, что масконы создаются точечными массами, то глубины их залегания должны составлять в Море Дождей около 200 км, в Море Ясности — 280 км, Кризисов — 160 км, Спокойствия — 180 км, Изобилия — 100 км, Познанном — 80 км, Океане Бурь — 60 км. Таким образом, измерения силы тяжести обнаружили неоднородное распределение плотности в верхней мантии.
Электропроводность. Ни одна из лунных экспедиций не провела непосредственных измерений электрического поля Луны. Оно было рассчитано по вариациям магнитного поля, зарегистрированного магнитометрами на станциях «Аполлона-12, -15, -16» и «Луноходе-2».
Луна, лишенная магнитосферы, при своем вращении вокруг Земли периодически оказывается в полнолуние в невозмущенной земной магнитосфере, в новолуние — в солнечном ветре и дважды по 2 дня — в переходном. ударном слое.
Флуктуации внешнего межпланетного магнитного поля проникают в Луну и индуцируют в ней поле вихревых токов. Время нарастания индуцированного поля зависит от распределения электропроводности в лунных недрах. Одновременные измерения внешнего переменного поля над Луной и вторичного поля на поверхности позволяют вычислить лунную электропроводность.
Луна устроена «удобно» для магнитно-теллурического зондирования. Межпланетное магнитное поле, вытянутое из Солнца, однородно, фронт его можно считать плоским, а потому для исследования не нужна, как на Земле, сеть лабораторий. Благодаря тому что Луна имеет более высокое электрическое сопротивление, чем Земля, для ее зондирования достаточно двух часовых наблюдений, тогда как на Земле нужны годовые.
Обтекающий Луну солнечный ветер, имеющий высокую проводимость, как бы окутывает Луну фольгой, не выпуская на поверхность индуцированные в недрах поля. Поэтому на солнечной стороне Луны можно использовать лишь горизонтальную компоненту переменного магнитного поля, тогда как на ночной стороне, где работает и вертикальная компонента, ситуация больше похожа на земную.
5
1 миллигал = 10-3 см/с2, миллионная часть ускорения силы тяжести на поверхности Земли.