КТП является, т. о., основой для описания элементарных взаимодействий, существующих в природе: электромагнитных, сильных и слабых. Наряду с этим методы КТП нашли широкое применение и в теории твёрдого тела, плазмы, атомного ядра, поскольку многие процессы в этих средах связаны с испусканием и поглощением различного рода элементарных возбуждений – квазичастиц (фононов, спиновых волн и др.).
Из-за бесконечного числа степеней свободы у поля взаимодействие частиц – квантов поля – приводит к математическим трудностям, которые до сих пор не удалось полностью преодолеть. Однако в теории электромагнитных взаимодействий любую задачу можно решить приближённо, т.к. взаимодействие можно рассматривать как малое возмущение свободного состояния частиц (вследствие малости безразмерной константы
» 1/137, характеризующей интенсивность электромагнитных взаимодействий). Теория всех эффектов в квантовой электродинамике находится в полном согласии с опытом. Тем не менее положение в этой теории нельзя считать благополучным, т.к. для некоторых физических величин (массы, электрического заряда) при вычислениях по теории возмущений получаются бесконечные выражения (расходимости). Их исключают, используя т.к. технику перенормировок, заключающуюся в том, что бесконечно большие величины для массы и заряда частицы заменяются их наблюдаемыми значениями. Большой вклад в разработку квантовой электродинамики внесли (в конце 40-х гг.) С. Томонага, Р. Фейнман, Ю. Швингер.Разработанные в квантовой электродинамике методы в дальнейшем пытались применить для расчёта процессов слабого и сильного (ядерного) взаимодействий, однако здесь встретился ряд проблем.
Слабые взаимодействия присущи всем элементарным частицам, кроме фотона. Они проявляются в распадах большинства элементарных частиц и в некоторых других их превращениях. Константа слабых взаимодействий, определяющая интенсивность протекания вызванных ими процессов, растет с увеличением энергии частиц.
После экспериментально установленного факта несохранения пространственной чётности в процессах слабого взаимодействия (1956) была предложена т. н. универсальная теория слабых взаимодействий, близкая к фермиевской теории b-распада. Однако, в отличие от квантовой электродинамики, эта теория не позволяла вычислять поправки в высших порядках теории возмущений, т. е. теория оказалась неперенормируемой. В конце 60-х гг. сделаны попытки построения перенормируемой теории слабых взаимодействий. Успех был достигнут на основе т. н. калибровочных теорий. Была создана объединённая модель слабых и электромагнитных взаимодействий. В этой модели наряду с фотоном – переносчиком электромагнитных взаимодействий между заряженными частицами, должны существовать переносчики слабых взаимодействий – т. н. промежуточные векторные бозоны. Предполагается, что интенсивность взаимодействий промежуточных бозонов с др. частицами такая же, как и у фотонов. Т. к. радиус слабых взаимодействий очень мал (меньше 10-15 см), то, согласно законам квантовой теории, масса промежуточных бозонов должна быть очень велика: несколько десятков протонных масс. На опыте эти частицы пока не обнаружены. Должны существовать как заряженные (W- и W +), так и нейтральный (Z) векторные бозоны. В 1973 экспериментально наблюдались процессы, которые, по-видимому, можно объяснить существованием нейтральных промежуточных бозонов. Однако справедливость новой единой теории электромагнитных и слабых взаимодействий нельзя считать доказанной.
Трудности создания теории сильных взаимодействий связаны с тем, что из-за большой константы связи методы теории возмущений оказываются здесь неприменимыми. Вследствие этого, а также в связи с наличием огромного экспериментального материала, нуждающегося в теоретическом обобщении, в теории сильных взаимодействий развиваются методы, основанные на общих принципах квантовой теории поля – релятивистской инвариантности, локальности взаимодействия (означающей выполнение условия причинности; см. Причинности принцип) и др. К ним относятся метод дисперсионных соотношений и аксиоматический метод (см. Квантовая теория поля). Аксиоматический подход является наиболее фундаментальным, но пока не обеспечивает достаточного количества конкретных результатов, допускающих экспериментальную проверку. Наибольшие практические успехи в теории сильных взаимодействий получены благодаря применению принципов симметрии.
Делаются попытки построить единую теорию слабых, электромагнитных и сильных взаимодействий (по типу калибровочных теорий).
Принципы симметрии и законы сохранения.
Физические теории позволяют по начальному состоянию объекта определить его поведение в будущем. Принципы симметрии (или инвариантности) носят общий характер, им подчинены все физические теории. Симметрия законов Ф. относительно некоторого преобразования означает, что эти законы не меняются при проведении данного преобразования. Поэтому принципы симметрии можно установить на основании известных физ. законов. С др. стороны, если теория каких-либо физических явлений ещё не создана, открытые на опыте симметрии играют эвристическую роль при построении теории. Отсюда особая важность экспериментально установленных симметрий сильно взаимодействующих элементарных частиц – адронов, теория которых, как уже говорилось, не построена.
Существуют общие симметрии, справедливые для всех физических законов, для всех видов взаимодействий, и приближённые симметрии, справедливые лишь для определённого круга взаимодействий или даже одного вида взаимодействия. Т. о., наблюдается иерархия принципов симметрии. Симметрии делятся на пространственно-временные, или геометрические, и внутренние симметрии, описывающие специфические свойства элементарных частиц. С симметриями связаны законы сохранения. Для непрерывных преобразований эта связь была установлена в 1918 Э. Нетер на основе самых общих предположений о математическом аппарате теории (см. Нётер теорема, Сохранения законы).
Справедливыми для всех типов взаимодействий являются симметрии законов Ф. относительно следующих непрерывных пространственно-временных преобразований: сдвига и поворота физической системы как целого в пространстве, сдвига во времени (изменения начала отсчёта времени). Инвариантность (неизменность) всех физических законов относительно этих преобразований отражает соответственно однородность и изотропию пространства и однородность времени. С этими симметриями связаны (соответственно) законы сохранения импульса, момента количества движения и энергии. К общим симметриям относятся также инвариантность по отношению к преобразованиям Лоренца и калибровочным преобразованиям (1-го рода) – умножению волновой функции на т. н. фазовый множитель, не меняющий квадрата её модуля (последняя симметрия связана с законами сохранения электрического, барионного и лептонного зарядов), и некоторые другие.
Существуют также симметрии, отвечающие дискретным преобразованиям: изменению знака времени (см. Обращение времени), пространственной инверсии (т. н. зеркальная симметрия природы), зарядовому сопряжению. На основе приближённой SU (3)-симметрии (см. Сильные взаимодействия) М. Гелл-Ман (1962) создал систематику адронов, позволившую предсказать существование нескольких элементарных частиц, открытых позднее экспериментально.