Физика и математика. Ф. – количественная наука. Основные её законы формулируются на математическом языке, главным образом с помощью дифференциальных уравнений. С др. стороны, новые идеи и методы в математике часто возникали под влиянием Ф. Анализ бесконечно малых был создан Ньютоном (одновременно с Г. В. Лейбницем) при формулировке основных законов механики. Создание теории электромагнитного поля привело к развитию векторного анализа. Развитие таких разделов математики, как тензорное исчисление, римановская геометрия, теория групп и др., стимулировалось новыми физическими теориями: общей теорией относительности и квантовой механикой. Развитие квантовой теории поля ставит новые проблемы функционального анализа и т.д.
Физика и другие естественные науки. Тесная связь Ф. с др. отраслями естествознания привела, по словам С. И. Вавилова, к тому, что Ф. глубочайшими корнями вросла в астрономию, геологию, химию, биологию и др. естественные науки. Образовался ряд пограничных дисциплин: астрофизика, геофизика, биофизика, физическая химия и др. Физические методы исследования получили решающее значение для всех естественных наук. Электронный микроскоп на несколько порядков повысил возможности различения деталей объектов, позволив наблюдать отдельные молекулы. С помощью рентгеноструктурного анализа изучаются не только кристаллы, но и сложнейшие биологические структуры. Подлинным его триумфом явилось установление структуры молекул ДНК, входящих в состав хромосом клеточных ядер всех живых организмов и являющихся носителями наследств, кода. Революция в биологии, связанная с возникновением молекулярной биологии и генетики, была бы невозможна без Ф.
Метод т. н. меченых атомов играет огромную роль в исследовании обмена веществ в живых организмах; многие проблемы биологии, физиологии и медицины были решены с их помощью. Ультразвук применяется в медицине для диагностики и терапии.
Как говорилось выше, законы квантовой механики лежат в основе теории химической связи. С помощью меченых атомов можно проследить кинетику химических реакций. Физическими методами, например с помощью пучков мюонов, полученных на ускорителях, удаётся осуществить химические реакции, не идущие в обычных условиях. Используются структурные аналоги атома водорода – позитроний и мюоний, существование и свойства которых были установлены физиками. В частности, с помощью мюония удаётся измерять скорость протекания быстрых химических реакций. (См. Мюоны.)
Развитие электроники позволяет наблюдать процессы, протекающие за время, меньшее 10-12сек. Оно же привело к революции в астрономии – созданию радиоастрономии.
Результаты и методы ядерной Ф. применяются в геологии; с их помощью, в частности, измеряют абсолютный возраст горных пород и Земли в целом (см. Геохронология).
Физика и техника. Ф. образует фундамент главнейших направлений техники. Электротехника и энергетика, радиотехника и электроника, светотехника, строительная техника, гидротехника, значительная часть военной техники выросли на основе Ф. Благодаря сознательному использованию физических законов техника из области случайных находок вышла на широкую дорогу целенаправленного развития. Если в 19 в. между физическим открытием и первым его техническим применением проходили десятки лет, то теперь этот срок сократился до нескольких лет.
В свою очередь, развитие техники оказывает не менее существенное влияние на совершенствование экспериментальной Ф. Без развития электротехники, электроники, технологии производства очень прочных и лишённых примесей материалов было бы невозможно создание таких устройств, как ускорители заряженных частиц, огромные пузырьковые и искровые камеры, полупроводниковые приборы и т.д.
Возникновение ядерной энергетики связано с крупными достижениями ядерной Ф. Ядерные реакторы-размножители на быстрых нейтронах могут использовать природный уран и торий, запасы которого велики. Осуществление управляемого термоядерного синтеза практически навсегда избавит человечество от угрозы энергетического кризиса.
Техника будущего будет основываться не на готовых природных материалах, а главным образом на синтетических материалах с наперёд заданными свойствами. Создание и исследование структуры вещества играют в решении этой проблемы определяющую роль.
Развитие электроники и создание совершенных ЭВМ, базирующиеся на достижениях Ф. твёрдого тела, неизмеримо расширили творческие возможности человека, а также привели к построению «думающих» автоматов, способных быстро принимать решения в обстановке, требующей обработки большого объёма информации.
Огромное повышение производительности труда достигается благодаря использованию ЭВМ (автоматизация производства и управления). По мере усложнения народного хозяйства объём перерабатываемой информации становится чрезвычайно большим. Поэтому очень важно дальнейшее усовершенствование вычислительных машин – увеличение их быстродействия и объёма памяти, повышение надёжности, уменьшение габаритов и стоимости. Эти усовершенствования возможны только на основе новых достижений Ф.
Современная Ф. стоит у истоков революционных преобразований во всех областях техники. Она вносит решающий вклад в научно-техническую революцию.
О развитии Ф. в СССР см. раздел Физические науки. См. также статьи Физические журналы, Физические институты.
Лит.: История и методология науки. Энгельс Ф., Диалектика природы, М., 1975; Ленин В. И., Материализм и эмпириокритицизм, Полное собрание соч., 5 изд., т. 18; его же, Философские тетради, там же, т. 29; Дорфман Я. Г., Всемирная история физики с древнейших времен до конца XVIII века, М., 1974; Кудрявцев П. С., История физики, т. 1–3, М., 1956–71; Лауэ М., История физики, пер. с нем., М., 1956; Льоцци М., История физики, пер. с итал., М., 1970; Марков М. А., О природе материи, М., 1976.
Общая физика. Хайкин С. Э., Физические основы механики, 2 изд., М., 1971; Стрелков С. П., Механика, 3 изд., М., 1975; Ландсберг Г. С., Оптика, 5 изд., М., 1976; Кикоин А. К., Кикоин И. К., Молекулярная физика, 2 изд., М., 1976; Калашников С. Г., Электричество, 3 изд., М., 1970; Горелик Г. С., Колебания и волны. Введение в акустику, радиофизику и оптику, 2 изд., М., 1959; Борн М., Атомная физика, пер. с англ., 3 изд., М., 1970; Шпольский Э. В., Атомная физика, т. 1, 6 изд., т. 2, 4 изд., М., 1974; Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, пер. с англ., в. 1–9, М., 1965–67; Берклеевский курс физики, т. 1–5, пер. с англ., М., 1971–74.
Теоретическая физика. Курс теоретической физики: Ландау Л. Д., Лифшиц Е. М., т. 1, Механика, 3 изд., М., 1973; т. 2, Теория поля, 6 изд., М., 1973; т. 3, Квантовая механика. Нерелятивистская теория, 3 изд., М., 1974; Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П., т. 4, ч. 1, Релятивистская квантовая теория, М., 1968; Лифшиц Е. М., Питаевский Л. П., т. 4, ч. 2, Релятивистская квантовая теория, М., 1971; Ландау Л. Д., Лифшиц Е. М., т. 5, ч. 1, Статистическая физика, 3 изд., М., 1976; их же, Механика сплошных сред, 2 изд., М., 1954; их же. Электродинамика сплошных сред, М., 1959; Голдстейн Г., Классическая механика, пер. с англ., 2 изд., М., 1975; Леонтович М. А., Введение в термодинамику, 2 изд., М. – Л., 1952; его же, Статистическая физика, М. – Л., 1944; Кубо Р., Термодинамика, пер. с англ., М., 1970; его же, Статистическая механика, пер. с англ., М., 1967; Тамм И. Е., Основы теории электричества, 9 изд., М., 1976; Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Давыдов А. С., Квантовая механика, 2 изд., М., 1973; Блохинцев Д. И,, Основы квантовой механики, 5 изд., М., 1976; Дирак П. А. М., Принципы квантовой механики, пер. с англ., М., 1960.