Ранее эти научные группы уже отличились в манипулировании формами нанообъектов: в 2005 году они получили нанотрубки, по форме напоминающие букву Y, этакие углеродные «штаны» на микроуровне. Оказалось, что такие трубки обладают свойствами обычных транзисторов, используемых в современной микроэлектронике. ЕГ

Учите топологию!
Журнал «Компьютерра» № 21 от 05 июня 2007 года _689q1j911.jpg

Для оценки этой новости важно, что она излагает не расхожие анекдоты, а действительные новости оперативной хирургии.

Тело человека – объект с очень сложной топологией. Вспомните, сколь сложно компартментализована (подразделена на множество отсеков) обычная эукариотическая клетка! Клетки непростым образом организованы в ткани, ткани – в органы и системы органов. Важнейшей характеристикой организма в целом является его план строения – архитектоника, общие принципы взаиморасположения частей. Знаете, как мучают детей при изучении зоологии в школе, заставляя зубрить, что у круглых червей полость тела первичная, а у кольчатых – вторичная? А ведь даже сходно организованные организмы могут быть топологически весьма различны.

Известно ли вам, что у мужчин полость тела замкнутая, а у женщин – нет? Яйцеклетки выпадают из яичника в полость тела, а уже потом из нее по фаллопиевым трубам попадают в матку, которая соединена с внешней средой. У наших далеких предков сперматозоиды проходили по подобному маршруту, но потом мужские половые клетки получили самостоятельный туннель, а полость тела замкнулась.

Как разобраться в топологической головоломке, которой является человеческое тело? В чем-то помогает компьютеризация. В канадском университете Калгари создана цифровая 4D-модель человеческого тела, названная Caveman. Четвертое измерение в ней – временное; а сама модель подготовлена в рамках совместного с Sun Microsystems проекта Cave по визуализации трехмерных окружений. Рассмотреть все детали различных «шестеренок» человеческого организма можно в специальном павильоне в 3D-очках, причем размеры установки позволяют демонстрировать любые органы и рассечения куда больше, чем в натуральную величину. Для чего это нужно? Для обучения врачей. Для демонстрации пациентам, что с ними планируют сделать. Для планирования операций – как традиционных, с широким рассечением для доступа к операционному полю, так и современных, щадящих.

Подход традиционной хирургии прост: взрежем всё, что затрудняет доступ к нужной точке, и с удобством сделаем свое дело. В послеоперационный период раны так или иначе заживут. Эндоскопическая хирургия позволила уменьшить разрезы, благодаря микрохирургическому инструментарию. Следующий шаг – отказ от рассечения покровов тела. Эта парадигма называется транслюминальной эндоскопической хирургией через естественные отверстия. Она использует введение эндоскопических инструментов через имеющиеся входы-выходы тела больного – обычно рот или влагалище. В полость тела попасть при этом можно через небольшой внутренний прокол. В случае женского организма проводить эндоскоп через фаллопиевы трубы тоже было бы неверно – и отверстие невелико, и весом риск повредить уязвимый орган. К счастью, внутренние проколы могут заживать быстрее, чем разрезы кожи. Новая технология уже в ходу. Так, операции по удалению желчного пузыря через влагалище проводятся и в США, и во Франции. А индийские хирурги сообщили о серии операций по удалению аппендикса через рот!

Такие операции хороши коротким послеоперационным периодом, низким уровнем боли, невысокой вероятностью инфицирования раны и последующим отсутствием шрамов. Есть и недостатки. В их числе – возможность неявных внутренних кровотечений, технологическая сложность работы, неприятный вкус во рту пациента… И, конечно, необходимость учить топологию. ДШ

Химическая футурология

Как известно, деньги в научных исследованиях играют первостатейную роль, поэтому американскую школу многие не без оснований считают самой мощной в мире, тем более что ее позиции постоянно укрепляются за счет притока перспективных специалистов из менее благополучных стран. Однако статистические исследования показывают, что не все так просто. Например, если ограничить рассмотрение химией, то хотя США здесь лидируют и это лидерство вероятно сохранится в ближайшие десять лет, налицо и явные упадочнические тенденции.

Преимущество США наиболее выражено в междисциплинарных областях, таких как биохимия, материаловедение, нанотехнологии, тогда как в «чисто» химических исследованиях Штаты постепенно сдают свои позиции. Например, в 2003 году на долю химии приходилось лишь 8% американских научных статей. В то же время доля химических статей в общей массе работ ученых из Китая и Индии составляло 25% и 27% соответственно. За последние десять лет количество химических публикаций американских ученых оставалось на одном уровне, и государственное финансирование химических исследований также не увеличивалось. В Америке снижается количество желающих получить ученую степень в области химии, что не может не беспокоить в отношении восполнения научных кадров. Правда, в приведенной оценке слабо учитываются исследования, проведенные в стенах коммерческих предприятий, чтобы выделить именно фундаментальные работы (хотя в промышленной сфере иногда делают не менее фундаментальные исследования). Кроме этого возникает проблема отделения химических и смежных с химией исследований.

Как полагают аналитики, лидерство США в химических исследованиях, помимо экономических факторов, обусловлено наличием хорошо организованных связей между учеными разных областей науки, сложившимися научными сообществами и относительной свободой ученых в профессиональном плане от академической иерархии. Снижение доли научных публикаций вообще с 38% в 1988 году до 30% в 2003 году, возможно, вызвано не столько охладевшим отношением американцев к науке, сколько стремительным ростом экономик других стран. Что касается химии, то США обгоняет всех по количеству цитированных американских статей. Но и цитируемость американских авторов снизилась с 54% в 1990–94 гг. до 47% в 2000–06 гг.


Перейти на страницу:
Изменить размер шрифта: