Многие ученые исследовали это распределение — Стефан, Больцман, Релей, Эйнштейн. Они установили, что распределение энергии по спектру зависит от температуры излучающего тела. С увеличением температуры максимум энергии передвигается от красного конца спектра к фиолетовому. Получив спектр и установив в нем распределение энергии, можно заключить о том, какова температура источника света, как бы далеко этот источник ни находился.

Так были определены температуры звездных атмосфер.

По характеру спектра (по яркости отдельных линий) звезды делятся на семь типов. Наше Солнце относится к типу желтых звезд; температура его внешней оболочки равна примерно 6000° С. А, например, звезда Сириус относится к типу белых звезд; температура ее внешней оболочки достигает 10 000° С.

Изучение планет

Планеты ближе к нам, чем звезды, в миллионы и миллиарды раз; они входят в нашу солнечную семью наряду с Землей. Однако о планетах, о том, из чего они состоят, о происходящих на них процессах, мы знаем меньше, чем о звездах. Это потому, что планеты светят не собственным светом, а отраженным светом Солнца.

Но спектральный анализ помогает и в этом случае. В самом деле, мы можем сравнивать между собой спектр лучей, пришедших непосредственно от Солнца, и спектр солнечных лучей, побывавших на планете и отраженных от нее. В спектре отраженных лучей появляются новые линии поглощения. Они появляются потому, что часть солнечных лучей поглощается поверхностью планеты и окружающей ее атмосферой, если она есть.

По спектральным линиям поглощения установлено, что в атмосферах планет Юпитера, Сатурна, Урана и Нептуна имеется в значительных количествах метан (соединение углерода с водородом) и аммиак (соединение азота с водородом). В то же время спектры не отмечают в их атмосферах ни водяных паров, ни кислорода.

Исследуя вопрос о том, имеется ли на планете Марс растительность, советский астроном, член-корреспондент Академии Наук СССР Г. А. Тихов установил, что спектры, отраженные Марсом, имеют полосы поглощения, которые характерны для земных высокогорных и полярных растений — пихты, можжевельников, брусники, клюквы, мхов и им подобных.

Наука против суеверий

Наука о свете играет важную роль в овладении силами природы, в раскрытии ее тайн, в разоблачении различных суеверий.

В прошлом многие небесные явления всегда поражали людей своей необычностью и таинственностью.

Временами с ясного неба падали «небесные камни»— метеориты. В ярком безоблачном небе вдруг «гасло» Солнце. Иногда по небу проносилась диковинная «хвостатая звезда» — комета. Во всех этих явлениях люди видели какой-то тайный, зловещий смысл, предзнаменование будущих несчастных событий. Думали, что небесные тела не имеют никакой связи с известной нам, окружающей нас материальной природой. Жизнь человека связывали с жизнью звезд, сущность которых считалась божественной.

Спектрограф значительно расширил наше познание Вселенной. Теперь мы знаем о ней гораздо больше, чем сто лет назад, до открытия спектрального анализа. И дело не в том, что наши знания выросли количественно; нет, они стали другими, более глубокими. Мы знаем теперь, куда и с какой скоростью движутся многие звезды, каков химический состав звезд; по звездным спектрам мы устанавливаем, как далеко отстоит от нас каждая звезда, каковы ее размеры, температура, какие физические условия царят в звездных атмосферах, какие процессы там протекают. При помощи спектрального анализа раскрыты причины многих небесных явлений. Благодаря умению расшифровывать спектры звезды стали нам столь же близкими, как и любое вещество, изучаемое в лабораториях. С них сорвано покрывало мистики и таинственности. Мы знаем теперь, что природа небесных тел та же, что и окружающая нас природа. Правда, все процессы в звездах протекают в особых условиях, например, при очень высоких давлениях, температурах и т. д., которые мы не можем пока воспроизвести в своих лабораториях. Но мы твердо знаем, что если мы научимся создавать подобные же условия (высокие температуры, давления и т. п.) в лабораториях, то наше земное вещество будет вести себя совершенно так же, как и в звездах.

Мы видим, наконец, что и органическая жизнь не является во Вселенной исключением. Материалистическая наука учит, что она возникает всегда, когда создаются подходящие для этого условия.

Наука доказывает, что в различных частях Вселенной действуют одни и те же законы природы и они доступны познанию человека. А расширение наших знаний о Вселенной, которому так мощно способствует наука о свете и которому нет предела, является могучим орудием в борьбе с мистикой и суевериями.

Невидимый свет

Электромагнитные волны

В то же время, когда спектроскопия начала так бурно развиваться, английский физик Джемс Клерк Максвелл (1831 —1879) обобщал результаты опытных исследований электрических и магнитных свойств материи. При этом он вовсе не имел дела со светом и со всеми понятиями, которые с ним связаны. Его интересовали другие вопросы: как взаимодействуют электрически заряженные частицы и токи, как появляются магнитные свойства вещества при движении зарядов, что происходит в пространстве, когда совершается электрический разряд, и аналогичные. Соответственно он пользовался такими понятиями, как электрическая и магнитная напряженность в данном месте пространства, скорость распространения электрического действия, диэлектрическая постоянная и т. п.

Максвелл опирался на опытные данные, полученные великим английским физиком Михаилом Фарадеем (1791 —1867), Эрстедтом, русским физиком Ленцем и другими. Экспериментального материала к 60-м годам прошлого века накопилось достаточно.

Еще Фарадей полагал, что магнит притягивает железо на расстоянии потому, что магнит создает вокруг себя в пространстве особое состояние — магнитное поле. Он нашел, что при движении магнита, от которого магнитное поле изменяется, в находящихся в этом поле проводниках возбуждается электрический ток. Максвелл обратил внимание на то, что верно и обратное: когда в проводниках быстро изменяются токи, в силу чего в пространстве вокруг изменяется электрическое поле, это изменение приводит к возникновению в пространстве магнитных влияний — магнитного поля. В свою очередь изменение магнитного поля приведет, согласно Фарадею, к новому изменению электрического поля. Новое изменение электрического поля вновь вызовет изменение магнитного. И так процесс будет продолжаться, пока не затухнет.

Рис. 25. Схема излучателя электромагнитных волн. К вибратору А, имеющему в Б разрыв, подведено от повышающего трансформатора Т высокое напряжение. В искровом промежутке Б проскакивает искра

Читатель, вероятно, уже почувствовал, что эта картина напоминает некоторый колебательный процесс. Существенный шаг вперед, который сделал Максвелл, как раз и состоит в том, что резкое изменение электрического поля (электрический импульс) он стал рассматривать как источник электромагнитного колебания, которое создает в пространстве электромагнитные волны.

Возбуждение электромагнитных волн

Простейший способ возбудить электромагнитные волны — создать электрический разряд. Представим себе металлический стержень с шаром на конце, заряженный положительным электричеством, и другой такой же стержень, заряженный отрицательным электричеством (см. рис. 25). Сблизим стержни настолько, чтобы между ними проскочила искра. Искра — это и есть электрический разряд, кратковременный ток через воздух, он длится тысячные доли секунды. При искровом разряде электрические заряды перескакивают с одного стержня на другой, а потом обратно, меняя направление и величину напряжения в шарах миллионы раз в секунду. Оказывается, что при этом в каждой точке пространства миллионы раз в секунду меняется электрическое и магнитное напряжение. Говорят, что каждая точка пространства получает электромагнитный импульс (толчок), или возбуждение, и это возбуждение распространяется вокруг нашего искрового разрядника, как круги по воде от упавшего камня. Это и есть электромагнитные волны.


Перейти на страницу:
Изменить размер шрифта: