Хидэёси Тоётоми
Хидэёси Тоётоми, см. Тоётоми Хидэёси.
Хижане
Хижа'не, западно-славянское племя, обитавшее в 8—12 вв. на южное побережье Балтийского моря, к В. от г. Росток. Х. входили в племенной союз лютичей.
Хийумаа
Хи'йумаа, Хиума, Даго, остров в Моонзундском архипелаге Балтийского моря, в Эстонской ССР. Площадь около 965 км2. Высота до 54 м. Сложен главным образом известняками и морскими отложениями антропогена. Почвы щебнистые и песчаные. Сосновые леса, по берегам заросли тростника. Рыболовство и рыбопереработка, земледелие, скотоводство. На Х. — г. Кярдла.
Хикаят
Хика'ят, хикайят (араб. — повествование), литературный термин у народов Ближнего, Среднего Востока и Юго-Восточной Азии. В широком смысле Х. — любое крупное сюжетное прозаическое (реже поэтическое) произведение; в узком значении — жанр безавторского книжного прозаического эпоса (например, «Повесть о ханге Туахе», 17 в., в классической малайской литературе). В арабской, персидской и турецкой литературах термин «Х.» употребляется в значении «рассказ». В турецкой литературе обозначает также анонимный народный рассказ.
«Хи-квадрат» распределение
«Хи-квадра'т» распределе'ние с f степенями свободы, распределение вероятностей суммы квадратов
c2 = X12+...+Xf2,
независимых случайных величин X1,..., Xf, подчиняющихся нормальному распределению с нулевым математическим ожиданием и единичной дисперсией. Функция «Х.-к.» р. выражается интегралом
Первые три момента (математическое ожидание дисперсия и третий центральный момент) суммы c2 равны соответственно f, 2f, 8f. Сумма двух независимых случайных величин c12 и c22, с f1 и f2 степенями свободы подчиняется «Х.-к.» р. с f1 + f2 степенями свободы.
Примерами «Х.-к.» р. могут служить распределения квадратов случайных величин, подчиняющихся Рэлея распределению и Максвелла распределению. В терминах «Х.-к.» р. с чётным числом степеней свободы выражается Пуассона распределение:
Если количество слагаемых f суммы c2 неограниченно увеличивается, то согласно центральной предельной теореме распределение нормированного отношения

где
Следствием этого факта является другое предельное соотношение, удобное для вычисления Ff (x) при больших значениях f:
В математической статистике «Х.-к.» р. используется для построения интервальных оценок и статистических критериев. Если Y1,..., Yn — случайные величины, представляющие собой результаты независимых измерений неизвестной постоянной а, причём ошибки измерений Yi — а независимы, распределены одинаково нормально и
Е (Yi — a) = 0, Е (Yi — а)2 = s2,
то статистическая оценка неизвестной дисперсии s2 выражается формулой
где
Отношение S2/s2 подчиняется «Х.-к.» р. с f = n — 1 степенями свободы. Пусть x1 и x2 — положительные числа, являющиеся решениями уравнений Ff (x1) = a/2 и Ff (x2) = 1 — a/2 [a — заданное число из интервала (0, 1/2)]. В таком случае
Р {х1 < S2/s2 < x2) = Р {S2/x2 < s2 < S2/x1} = 1—a.
Интервал (S2/x1, S2/x2) называют доверительным интервалом для s2, соответствующим коэффициенту доверия 1 — a. Такой способ построения интервальной оценки для s2 часто применяется с целью проверки гипотезы, согласно которой s2 = s2(s2 — заданное число): если s2 принадлежит указанному доверительному интервалу, то делается заключение, что результаты измерений не противоречат гипотезе s2 = s2. Если же
s2 £ S2/x2 или s2 ³ S2/x1,
то нужно считать, что s2 > s2 или s2 < s2 соответственно. Такому критерию отвечает значимости уровень, равный a.
Лит.: Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975.
Л. Н. Большев.
Хикмет Назым
Хикме'т (Hikmet) Назым, Назым Хикмет Ран (1902—63), турецкий писатель и общественный деятель. См. Назым Хикмет Ран.