Nightingale songs, pheasant tails, firefly flashes and the rainbow scales of tropical reef fish are all maximizing aesthetic beauty, but it is not – or is only incidentally – beauty for human delectation. If we enjoy the spectacle it is a bonus, a {120} by-product. Genes that make males attractive to females automatically find themselves passed down the digital river to the future. There is only one utility function that makes sense of these beauties; it is the same one that explains elephant-seal sex ratios, cheetahs and antelopes running superficially futile races against each other, cuckoos and lice, eyes and ears and windpipes, sterile worker ants and superfertile queens. The great universal Utility Function, the quantity that is being diligently maximized in every cranny of the living world is, in every case, the survival of the DNA responsible for the feature you are trying to explain.

Peacocks are burdened with finery so heavy and cumbersome that it would gravely hamper their efforts to do useful work, even if they felt inclined to do useful work – which, on the whole, they don't. Male songbirds use dangerous amounts of time and energy singing. This certainly imperils them, not only because it attracts predators but because it drains energy and uses time that could be spent replenishing that energy. A student of wren biology claimed that one of his wild males sang itself literally to death. Any utility function that had the long-term welfare of the species at heart, even the long-term survival of this particular individual male, would cut down on the amount of singing, the amount of displaying, the amount of fighting among males. Yet, because what is really being maximized is DNA survival, nothing can stop the spread of DNA that has no beneficial effect other than making males beautiful to females. Beauty is not an absolute virtue in itself. But inevitably, if some genes do confer on males whatever qualities the females of the species happen to find desirable, those genes, willy-nilly, will survive. {121}

Why are forest trees so tall? Simply to overtop rival trees. A “sensible” utility function would see to it that they were all short. They would get exactly the same amount of sunlight, with far less expenditure on thick trunks and massive supporting buttresses. But if they were all short, natural selection couldn't help favoring a variant individual that grew a little taller. The ante having been upped, others would have to follow suit. Nothing can stop the whole game escalating until all trees are ludicrously and wastefully tall. It is ludicrous and wasteful only from the point of view of a rational economic planner thinking in terms of maximizing efficiency. But it all makes sense once you understand the true utility function – genes are maximizing their own survival. Homely analogies abound. At a cocktail party, you shout yourself hoarse. The reason is that everybody else is shouting at top volume. If only the guests could come to an ^agreement to whisper, they'd hear one another exactly as well with less voice strain and less expenditure of energy. But agreements like that don't work unless they are policed. Somebody always spoils it by selfishly talking a bit louder, and, one by one, everybody has to follow suit. A stable equilibrium is reached only when everybody is shouting as loudly as physically possible, and this is much louder than required from a “rational” point of view. Time and again, cooperative restraint is thwarted by its own internal instability. God's Utility Function seldom turns out to be the greatest good for the greatest number. God's Utility Function betrays its origins in an uncoordinated scramble for selfish gain.

Humans have a rather endearing tendency to assume that welfare means group welfare, that “good” means the good of society, the future well-being of the species or even of the {122} ecosystem. God's Utility Function, as derived from a contemplation of the nuts and bolts of natural selection, turns out to be sadly at odds with such Utopian visions. To be sure, there are occasions when genes may maximize their selfish welfare at their level, by programming unselfish cooperation, or even self-sacrifice, by the organism at its level. But group welfare is always a fortuitous consequence, not a primary drive. This is the meaning of “the selfish gene.”

Let us look at another aspect of God's Utility Function, beginning with an analogy. The Darwinian psychologist Nicholas Humphrey made up an illuminating fact about Henry Ford. “It is said” that Ford, the patron saint of manufacturing efficiency, once

commissioned a survey of the car scrapyards of America to find out if there were parts of the Model T Ford which never failed. His inspectors came back with reports of almost every kind of breakdown: axles, brakes, pistons – all were liable to go wrong. But they drew attention to one notable exception, the kingpins of the scrapped cars invariably had years of life left in them. With ruthless logic Ford concluded that the kingpins on the Model T were too good for their job and ordered that in future they should be made to an inferior specification.

You may, like me, be a little vague about what kingpins are, but it doesn't matter. They are something that a motor car needs, and Ford's alleged ruthlessness was, indeed, entirely logical. The alternative would have been to improve all the other bits of the car to bring them up to the standard of the kingpins. But then it wouldn't have been a Model T he was manufacturing but a Rolls Royce, and that {123} wasn't the object of the exercise. A Rolls Royce is a respectable car to manufacture and so is a Model T, but for a different price. The trick is to make sure that either the whole car is built to Rolls Royce specifications or the whole car is built to Model T specifications. If you make a hybrid car, with some components of Model T quality and some components of Rolls Royce quality, you are getting the worst of both worlds, for the car will be thrown away when the weakest of its components wears out, and the money spent on high-quality components that never get time to wear out is simply wasted.

Ford's lesson applies even more strongly to living bodies than to cars, because the components of a car can, within limits, be replaced by spares. Monkeys and gibbons make their living in the treetops and there is always a risk of falling and breaking bones. Suppose we commissioned a survey of monkey corpses to count the frequency of breakage in each major bone of the body. Suppose it turned out that every bone breaks at some time or another, with one exception: the fibula (the bone that runs parallel to the shinbone) has never ever been observed to break in any monkey. Henry Ford's unhesitating prescription would be to redesign the fibula to an inferior specification, and this is exactly what natural selection would do too. Mutant individuals with an inferior fibula – mutant individuals whose growth rules call for diverting precious calcium away from the fibula – could use the material saved to thicken other bones in the body and so achieve the ideal of making every bone equally likely to break. Or the mutant individuals could use the calcium saved to make more milk and so rear more young. Bone can safely be shaved off the fibula, at least up to the point where {124} it becomes as likely to break as the next most durable bone. The alternative – the “Rolls Royce” solution of bringing all the other components up to the standard of the fibula – is harder to achieve.

The calculation isn't quite as simple as this, because some bones are more important than others. I guess it is easier for a spider monkey to survive with a fractured heel-bone than with a fractured armbone, so we should not literally expect natural selection to make all bones equally likely to break. But the main lesson we take away from the legend of Henry Ford is undoubtedly correct. It is possible for a component of an animal to be too good, and we should expect natural selection to favor a lessening of quality up to, but not beyond, a point of balance with the quality of the other components of the body. More precisely, natural selection will favor a leveling out of quality in both the downward and upward directions, until a proper balance is struck over all parts of the body.


Перейти на страницу:
Изменить размер шрифта: