4. Происхождение жизни: абиогенез и панспермия. Гиперцикл. Геохимический подход к проблеме.

Завершив раздел, посвященный эволюции самой Земли, мы приступаем теперь к изучению эволюции жизни на ней. Сразу оговорюсь: я не собираюсь здесь ни углубляться в дебри определений того, что такое «жизнь», ни обсуждать чисто химические аспекты этого явления – это увело бы нас слишком далеко от темы спецкурса[7] . Наш подход к проблеме жизни на Земле будет сугубо функциональным, и в его рамках нам следует принять одно аксиоматическое утверждение: эволюция биосферы и составляющих ее экосистем идет в целом в сторону возникновения все более совершенных, т.е. устойчивых и экономных, круговоротов вещества и энергии. Совершенствование циклов направлено на то, чтобы минимизировать безвозвратные потери биологических систем: экосистема стремится препятствовать вымыванию микроэлементов и захоронению неокисленного углерода, переводить воду из поверхностного стока в подземный, и т.д. Поэтому с общепланетарной точки зрения жизнь следует рассматривать как способ стабилизации существующих на планете геохимических циклов.

Что же касается происхождения жизни на Земле, то обычно проблему эту, еще со времен Э. Геккеля (1866), сводят к чисто химической задаче: как синтезировать сложные органические макромолекулы (прежде всего – белки и нуклеиновые кислоты) из простых (метана, аммиака, сероводорода и пр.), которые составляли первичную атмосферу Земли. Следует честно признать, что даже эта, в общем-то техническая, задача чрезвычайно далека от своего разрешения. В двадцатые годы А.И. Опарин и Дж. Холдейн экспериментально показали, что в растворах высокомолекулярных органических соединений могут возникать зоны повышенной их концентрации – коацерватные капли – которые в некотором смысле ведут себя подобно живым объектам: самопроизвольно растут, делятся и обмениваются веществом с окружающей их жидкостью через уплотненную поверхность раздела. Затем, в 1953 году, С. Миллер воспроизвел в колбе газовый состав первичной атмосферы Земли (исходя из состава современных вулканических газов), и при помощи электрических разрядов, имитирующих грозы, синтезировал в ней ряд органических соединений – в том числе аминокислоты. Через некоторое время С. Фоксу удалось соединить последние в короткие нерегулярные цепи – безматричный синтез полипептидов; подобные полипептидные цепи были потом реально найдены, среди прочей простой органики, в метеоритном веществе. Этим, собственно говоря, и исчерпываются реальные успехи, достигнутые в рамках концепции абиогенеза – если не считать того, что было ясно осознано по крайней мере одно фундаментальное ограничение на возможность синтеза «живых» (т.е. биологически активных) макромолекул из более простых органических «кирпичиков».

Дело в том, что многие органические соединения представляют собой смесь двух так называемых оптических изомеров – веществ, имеющих совершенно одинаковые химические свойства, но различающихся так называемой оптической активностью. Они по-разному отклоняют луч поляризованного света, проходящий через их кристаллы или растворы, и в соответствии с направлением этого отклонения называются право– или левовращающими; свойством этим обладают лишь чистые изомеры, смеси же их оптически неактивны. Явление это связывают с наличием в молекуле таких веществ так называемого асимметричного атома углерода, к четырем валентностям которого могут в разном порядке присоединяться четыре соответствующих радикала (рисунок 13). Так вот, эти химически идентичные вещества, как выяснил еще в 1848 г. Л. Пастер, вовсе не являются таковыми для живых существ: плесневый гриб пенициллиум, развиваясь в среде из виноградной кислоты, «поедает» лишь ее правовращающий изомер, а в среде из молочной кислоты – левовращающий (на этом, кстати, основан один из методов разделения оптических изомеров), человек легко определяет на вкус изомеры молочной кислоты.

РИСУНОК 13. (пропущен) «Левая» и «правая» молекулы аланина.

Сейчас известно, что все белки на нашей планете построены только из левовращающих аминокислот, а нуклеиновые кислоты – из правовращающих сахаров; это свойство, называемое хиральной чистотой, считается одной из фундаментальнейших характеристик живого. А поскольку при любом абиогенном синтезе (например, в аппарате Миллера) образующиеся аминокислоты будут состоять из приблизительно равных (по теории вероятностей) долей право– и левовращающих изомеров, то в дальнейшем – при синтезе из этого «сырья» белков – перед нами встанет задача: как химическими методами разделить смесь веществ, которые по определению химически идентичны? (Не зря оптической активностью обладают лишь природные сахара – и ни один из синтетических, а упомянутые выше полипептиды из метеоритного вещества состоят из равных долей право– и левовращающих аминокислот.)

Между тем, даже успешный синтез «живых» макромолекул (до которого еще, что называется, «семь верст – и все лесом») сам по себе проблемы не решает. Для того, чтобы макромолекулы заработали, они должны быть организованы в клетку – причем никаких возможностей для «промежуточной посадки» в ходе этого немыслимой сложности «перелета» вроде бы не просматривается: все так называемые доклеточные формы жизни – вирусы – являются облигатными (т.е. обязательными) внутриклеточными паразитами, а потому навряд ли могут являться предшествениками клеток. Пропасть, отделяющая полный набор аминокислот и нуклеотидов от простейшей по устройству бактериальной клетки, в свете современных знаний стала казаться еще более непреодолимой, чем это представлялось в прошлом веке.

Известна такая аналогия: вероятность случайного возникновения осмысленной аминокислотно-нуклеотидной последовательности соответствует вероятности того, что несколько килограммов типографского шрифта, будучи сброшены с крыши небоскреба, сложатся в 105-ую страницу романа «Война и мир». Абиогенез (в его классическом виде) как раз и предполагал такое «сбрасывание шрифта» – раз, 10 раз, 10100 раз – сколько понадобится, пока тот не сложится в требуемую страницу. Сейчас всем понятно, что это просто несерьезно: потребное для этого время (его вполне можно рассчитать) на много порядков превосходит время существования всей нашей Вселенной (не более 20 млрд лет). В результате мы оказываемся перед неизбежной необходимостью признать прямое вмешательство в этот случайный процесс Бога (тут можно придумать какие-нибудь эвфемизмы, но суть от этого не изменится); а раз так, то данная проблема, как легко догадаться, вообще не относится к сфере науки. Таким образом, получается, что по крайней мере в рамках чисто химического подхода проблема зарождения жизни принципиально неразрешима.


Перейти на страницу:
Изменить размер шрифта: