1. Возраст Земли и Солнечной системы. Абсолютный и относительный возраст. Геохронологическая шкала.
Прежде всего заметим, что для ученых сама по себе постановка вопроса о возрасте Земли была некогда весьма революционной – ибо «возраст» подразумевает наличие «даты рождения». Конечно, в любой из религий соответствующее божество создает Землю с населяющими ее существами из первозданного Хаоса, однако европейская наука унаследовала от античных философов-материалистов принципиально иное видение Мира. Для нее Земля всегда была неотъемлемой частью той самой Вселенной, которая «едина, бесконечна и неподвижна... Она не рождается и не уничтожается... Она не может уменьшаться и увеличиваться» (Джордано Бруно). Но вот в конце Средневековья астрономы открывают существование так называемых новых звезд: оказывается, небеса не абсолютно неизменны, как считалось испокон веков! Следовательно, в принципе возможны и наиболее решительные (с точки зрения Человечества) изо всех возможных изменений: начало и конец существования Земли и видимой части Вселенной. А раз так, то не можем ли мы попытаться установить, когда было это начало и каким будет этот конец – не прибегая к помощи мифологии (шести дням творения, Сумеркам богов, и т.д.)?
Необходимо заметить, что людей первоначально заинтересовал возраст не Земли как небесного тела, а именно обитаемой Земли – как сейчас сказали бы, биосферы. Однако ясно, что, определив время возникновения жизни, мы тем самым получим минимальный срок существования и самой планеты. А поскольку источником жизни на Земле вполне справедливо полагали энергию Солнца, то возраст нашего светила, в свою очередь, даст нам максимальный срок существования биосферы.
Установление же времени существования Солнца – после того как были открыты законы сохранения вещества и энергии – казалось физикам довольно простой задачей. Солнце постоянно излучает энергию в пространство, назад ничего не возвращается, так что, по идее, количество энергии в Солнечной системе должно постоянно убывать. Самый энергетически выигрышный процесс (из известных до XX века) – сжигание каменного угля; тепло и свет при этом создаются в результате химической реакции C+O2 = CO2+Q. А поскольку нам известны и величина Q, и количество энергии, излучаемой Солнцем за единицу времени, и масса Солнца (она была приближенно вычислена еще в XVII веке), то рассчитать суммарное время существования угольного костра таких размеров можно буквально в одно действие. Вот тут-то и выяснилось, что он должен прогореть дотла всего-навсего за полторы тысячи лет. Конечно, существуют вещества более энергоемкие, чем уголь, но это не решает проблему: расчетное время существования Солнца все равно оказывается меньше шести тысяч лет – то есть меньше времени существования человеческой цивилизации; ясно, что это абсурд.
Необходимо было найти источник, питающий своей энергией Солнце – иначе вообще рушился закон сохранения энергии. И вот в 1853 г. Г. Гельмгольцу удалось предложить вполне приемлемую для того времени гипотезу. Он предположил, что Солнце постоянно сжимается – верхние его слои под собственной тяжестью как бы падают на нижние, а их потенциальная энергия при этом убывает (ведь масса слоев постоянна, а высота их «подъема» над центром Солнца уменьшается); именно «теряющаяся» потенциальная энергия верхних слоев и выделяется в виде тепла и света. Возникает вопрос: какая скорость этого сжатия необходима для того, чтобы обеспечить нынешнюю светимость Солнца? Ответ: очень небольшая – за 250 лет (то есть за все время существования современной астрономии) – всего-навсего 37 км; для сравнения: нынешний диаметр Солнца – почти 1,5 миллиона км. Очевидно, что такие изменения диаметра никакими измерительными приборами не ловятся.
Гипотеза эта имела и одно следствие, прямо касающееся возраста Земли. Если считать, что светимость Солнца (и, соответственно, скорость его сжатия) в прежние времена была примерно такой же, как сейчас, то, согласно расчетам Гельмгольца, 18 миллионов лет назад диаметр светила должен был превышать нынешний диаметр орбиты Земли. Следовательно, наша планета никак не старше этих самых 18 миллионов лет. Физиков эта цифра вполне удовлетворила, и они сочли вопрос о предельном возрасте Земли исчерпанным, но вот геологи восстали против такой датировки самым решительным образом.
Дело в том, что геология уже накопила к тому времени огромное количество эмпирических (т.е. основанных на непосредственном опыте) данных о строении поверхностных слоев планеты и о происходящих на ней процессах (например, о движении горных ледников, водной эрозии и т.д.). В 1830 году Ч. Лайелль, исходя из того, что геологические процессы (прежде всего осадконакопление) в прошлом должны были протекать примерно с той же скоростью, что и ныне – принцип актуализма[1] – подсчитал, что время, необходимое для образования одних только доступных для прямого изучения осадочных толщ, должно составлять несколько сот миллионов лет. Расчеты Лайелля основывались на гигантском фактическом материале и казались геологам и биологам гораздо более близкими к истине, чем гельмгольцевы 18 миллионов лет. Однако логика Гельмгольца казалась неопровержимой – с законом сохранения энергии особо не поспоришь... Для того, чтобы возобладала точка зрения геологов (а правильной, как теперь известно, оказалась именно она) необходимо было найти иной, чем гравитационное сжатие, источник энергии для Солнца.
В 1896 году А. Беккерель открыл явление радиоактивности. Радиоактивность оказалась одним из типов ядерных реакций – изменений в комбинациях составляющих атомное ядро протонов и нейтронов; при этих реакциях выделяется неизмеримо больше энергии, чем при любых химических превращениях. В 1905 году А. Эйнштейн установил, что в ядерных реакциях массу можно рассматривать как чрезвычайно концентрированную форму энергии, и вывел свою знаменитую формулу их эквивалентности: Е = mc^2 , где с – скорость света. Величина c^2 чрезвычайно велика, а потому даже небольшое количество массы эквивалентно огромному количеству энергии: 1 г массы = 21,5 млрд ккал (столько энергии выделится, если сжечь два с половиной миллиона литров бензина). Если предположить, что Солнце черпает энергию за счет ядерных реакций (каких именно – пока неважно, эйнштейнова формула справедлива для них всех), то для обеспечения его нынешней светимости необходимо расходовать 4600 тонн вещества в секунду.