Кстати сказать, как ни странно, этот порог был, так сказать, осознан относительно недавно. Квантовая теория – это 27-28 годы, а порог в 67-м году был описан. Мои коллеги и я понимали, что он есть, но не очень понимали его существо. Но чувствовали себя примерно так же, как вы, когда вам рассказывают о квантовой теории: есть волновые свойства у центра массы зеркала килограмм 10-ти массой и при комнатной температуре, но при хорошей изоляции.

Вот здесь, так сказать, наступает некоторый критический момент в поиске. Вся система рассчитана лет на 30 работы. Сейчас идёт запись на двух антеннах. Запись закончится где-то в мае, начнётся обработка. Посмотрим, не видно ли чего-либо, а вдруг чего-нибудь обнаружили? Но, по-видимому, нет – по чувствительности дотянулись до расстояния немножечко больше, чем мегапарсек от Земли. Надо всё-таки хотя бы 10 мегапарсек иметь. Заведомо эта цифра будет получена в течение ближайших пяти лет, сомнений нет.

Дальше начнётся полная реконструкция, и будут использованы, в частности, разработки МГУ и разработки из Нижнего Новгорода. Я опускаю технические детали, ведь зеркало – это шедевр технологического и физического искусства, если хотите – науки, как угодно называйте.

Наконец, ещё одна трудность. Если квантовое поведение, если есть предел – как его обойти? Есть рецепт, он был найден исторически относительно недавно. Надо перестать избирать координату. Надо избирать, например, импульс. Импульс сам с собой коммутирует во времени у свободной массы. Но это сделать не очень просто. И надо как-то переделывать так, чтобы не слишком дорого было. всё-таки треть подводной лодки, правда? Это дорого. Это же не на войну, это же для удовлетворения любопытства.

А.Г. Ну, да.

В.Б. Посему, пришлось поработать. Есть элегантная модель, предложенная моим коллегой профессором Халили. Можно обойти проблемы, и относительно простые варианты наклёвываются, но они ещё не доработаны, над этим предстоит работать. Так что всё будет интересно и очень здорово. Положительный результат мы с Михаилом Васильевичем гарантируем. Может быть, так случится, что он будет несколько позже, чем мы хотели бы, но будет.

Михаил Васильевич дальше расскажет о других длинах волн и о других источниках. Но заведомо известно следующее: узнаем, какова популяция, сколько нейтронных звёзд в галактиках, и по форме всплеска узнаем, каково уравнение состояния нейтронной звезды. Заведомо. Второе. Есть большая вероятность, не на первом этапе, а на втором, обнаружить более редкие события, когда нейтронная звезда сталкивается с чёрной дырой. Вот тут будет момент истины для общей теории относительности.

А.Г. Есть чёрные дыры или их нет?

В.Б. То, что есть плотные образования, очень на них похожие, сомнений не вызывает. Вот есть ли у них корочка, радиус Шварцшильда? Когда гравитационный потенциал точно равняется «с2». Это означает, что теория относительности справедлива до этой точки, до этой величины. Вот на это никаких экспериментальных доводов нет. И посему это будет самое интересное – столкновение нейтронной звезды с чёрной дырой или двух чёрных дыр. Профессор Торн, которого я упоминал, говорит: «Внутри чёрной дыры нет ничего, кроме как пространства и времени». Это образец, если хотите, фундаментализма, фундаменталистского подхода к тому, куда придёт наука: количество терминов, количество сущностей должно сужаться. С его точки зрения нет ничего, кроме пространства и времени.

А.Г. Что же тогда образует эту страшную гравитацию и горизонт событий? Где масса-то, если есть только пространство и время?

В.Б. Гравитационная волна – это рябь на поверхности кривизны.

А.Г. Кривизны пространства-времени?

В.Б. Да. А источники – это особые точки, тут можно чисто геометрический подход применить, если считать, что точки существуют. Их нет на самом деле, но что-то похожее на точки. Это особенность для геометродинамики. Так можно, запрета нет. Но фундаментализм здесь просто пока ещё восклицает, никаких рецептов и проверяемых на опыте результатов не даёт. Вот это то, что я хотел рассказать.

А.Г. Я только один вопрос задам: а какова вероятность столкновения двух чёрных дыр?

В.Б. Есть несколько моделей. И астрофизики здесь до конца не договорились. Если одна галактика, то, согласно замечательному физику Хансу Бете и Брауну, его соавтору, – раз в десять тысяч лет.

А.Г. Это нейтронные звёзды? Или и то и другое?

В.Б. Нет, нейтронные звёзды только.

А.Г. А чёрные дыры? Коллапс двух чёрных дыр? Мне представляется вероятность меньшей, нет?

В.Б. Наверное, меньшей. Посему мечта не 10 в 26-й сантиметра, а чуточку увеличить чувствительность. И тогда мы дойдём почти до горизонта событий. Будут космологические расстояния, следовательно, мы будем…

А.Г. Тогда всё, что происходит, мы услышим.

В.Б. То, что происходило.

А.Г. Происходило, конечно.

В.Б. В оптимистическом случае – это сто миллионов лет тому назад, в пессимистическом – 300, 400 миллионов, может быть миллиард лет. Миллиард лет – это уже космологические расстояния. Но я не хочу отнимать время у Михаила Васильевича.

А.Г. Да, пожалуйста.

М.С. Вадим Борисович рассказал о том, что люди делают на Земле, а я расскажу о том, как люди пытаются зарегистрировать гравитационные волны в космосе. Вадим Борисович привёл очень яркий пример: если мы перейдём от обычных наземных излучателей к космическим, резко вырастает мощность. Естественно, чем больше у нас масса, чем быстрее движение, тем больше мощность гравитационного излучения. Самое быстрое движение, самые большие массы – это ранняя Вселенная. Пожалуйста, картинку следующую.

В ранней Вселенной мы можем ожидать сильного излучения гравитационных волн. Здесь изображён ещё один способ детектирования гравитационных волн, но теперь чисто космический способ. Здесь изображены три спутника. То кольцо, которое в левом нижнем углу, это один спутник, с двумя другими спутниками формируется треугольник. Но этот треугольник будет уже не на Земле, а на орбите Земли. Такой схемой можно будет детектировать очень долгие периодические источники.

А.Г. Это тот же интерферометр только таких размеров, что…

В.Б. Это то же самое, в принципе: 5 миллионов километров вместо четырех километров. Всё.

М.С. По сути, по идейной стороне он ничем не отличается от того интерферометра, про который рассказывал Вадим Борисович, за одним только исключением, что размеры его гораздо больше. Примерно в миллион раз. Соответственно, и планируемая чувствительность тоже больше. Наверняка можно сказать, что эти группы встретят очень большие технологические трудности. Но будем надеяться, что они их преодолеют. Пожалуйста, следующую картинку.

Какие могут быть источники в ранней Вселенной? Вы видите здесь нарисованную модель так называемого рождения гравитонов из вакуума. В ранней Вселенной у нас могло быть так называемое параметрическое усиление гравитонов, и те гравитационные волны, которые существовали в виде вакуумных колебаний, могли усиливаться и превращаться во вполне зримые и ощутимые гравитационные колебания, которые мы можем зарегистрировать сейчас.

Отличие от такого изображения только в том, что спектр гравитационных волн очень широкий. Самые высокие частоты – это 100 мегагерц, самые низкие частоты составляют величину порядка 10 в минус 18-й герц, или порядка современной постоянной Хаббла. Следующую картинку, пожалуйста. Здесь ещё раз показан прибор, который называется интерферометр «LISA», который, в принципе, может регистрировать гравитационные волны от ранней Вселенной.

Давайте мы пройдёмся по всему диапазону, который могут представлять гравитационные волны. Вадим Борисович рассказал об интерферометре «ЛАЙГО», который рассчитан, в основном, на диапазон обычных волн, это от 1 килогерца до ста герц. Другими словами, на тот диапазон, который мы можем слышать.


Перейти на страницу:
Изменить размер шрифта: