Спектральные призмы

Спектра'льные при'змы, дисперсионные призмы, один из классов призм оптических; служат для пространственного разделения (разложения в спектр) излучений оптического диапазона, различающихся длинами волн. Принцип действия С. п., основанный на явлении дисперсии света, и материалы для С. п. описаны в ст. Дисперсионные призмы. Наиболее употребительны следующие С. п. (рис.):

  1) Простая трёхгранная призма с преломляющим углом a = 60°.

  2) Призма Корню, представляющая собой соединение на оптическом контакте двух прямоугольных призм, вырезанных из лево- и правовращающего кварца (см. Оптическая активность, Оптически-активные вещества) так, что кристаллографические оси параллельны основаниям призм. В призме Корню компенсируются двойное лучепреломление и вращение плоскости поляризации, что улучшает качество спектра. В автоколлимационных приборах (см. Автоколлимация) того же эффекта достигают, применяя одну половину призмы Корню, задняя поверхность которой покрыта отражающим слоем.

  3) Призма Аббе, в которой разложение в спектр сопровождается отклонением пучка лучей на 90°.

  4) Призма Розерфорда из трёх склеенных призм, увеличивающая угловую дисперсию за счёт большого преломляющего угла (100°) при сравнительно малых потерях на отражение.

  5) Призма прямого зрения (Амичи), состоящая из трёх или более склеенных призм. Один из средних лучей спектра проходит призму Амичи без отклонения; лучи с большей или меньшей длиной волны отклоняются в стороны от этого среднего луча. Оптическая ось в приборах с призмой Амичи не имеет излома, типичного для большинства спектральных приборов .

  К С. п. относится и призма Фери, при использовании которой наряду с разложением в спектр пучка лучей происходит его фокусировка. Это достигается благодаря тому, что рабочие грани призмы искривлены и одна из них является зеркалом, т. к. на неё нанесено металлическое покрытие. При радиусе кривизны выходной поверхности R спектр располагается на окружности радиуса R/2.

  До 70-х гг. 20 в. С. п. чрезвычайно широко применялись в спектральных приборах. Затем наметилась тенденция к замене их во многих случаях диспергирующими элементами др. типов.

  Л. Н. Капорский.

Большая Советская Энциклопедия (СП) i010-001-246726028.jpg

Спектральные призмы: 1 — простая трёхгранная призма с преломляющим углом a = 60°; 2 — призма Корню; преломляющие углы a1 обеих прямоугольных призм, из которых она состоит, равны 30°; 3 — призма Аббе, включающая две прямоугольные призмы с преломляющими углами a1 = 30°, приклеенные к граням равнобедренной (a2 = 45°) прямоугольной отражательной призмы; показатели преломления всех трёх призм одинаковы (n1 = n2). Если луч света падает на призму Аббе так, что в отражательную призму он входит под углом, близким к нормали, его отклонение от первоначального направления при выходе из последней призмы составляет около 90°; 4 — призма Розерфорда. Центральная призма с преломляющим углом(a2 = 100° изготовляется из стекла (флинт) с большим показателем преломления n2, две боковые призмы — из стекла (крон) с малым n1, a1 = 21°; 5 — трёхкомпонентная призма Амичи. Боковые призмы изготовляются из крона, средняя — из флинта (n2 > n1); a1 = a2 = 90°. Стрелками в случаях 1, 3, 5 показан ход луча света.

Спектральные серии

Спектра'льные се'рии, группы спектральных линий в спектрах атомов, подчиняющиеся определённым закономерностям. Линии данной С. с. в спектрах испускания возникают при всех разрешенных квантовых переходах с различных начальных верхних энергетических уровней энергии атома на один и тот же конечный нижний уровень (в спектрах поглощения — при обратных переходах). Волновые числа линий С. с. подчиняются определённым закономерностям и сходятся к границе серии (см. рис. 1 в ст. Атом). Наиболее четко С. с. выделяются в спектрах водорода и водородоподобных атомов, гелия, щелочных металлов (серии Лаймана, Бальмера, Пашена, Брэкета, Пфаунда и Хамфри для Н; главная, диффузная и резкая серии для щелочных металлов; см. Атомные спектры).

Спектральный анализ (в линейной алгебре)

Спектра'льный ана'лиз линейных операторов, обобщение выросшей из задач механики теории собственных значений и собственных векторов матриц (т. е. линейных преобразований в конечномерном пространстве) на бесконечномерный случай (см. Линейный оператор, Операторов теория). В теории колебаний изучается движение системы с n степенями свободы в окрестности положения устойчивого равновесия, которое описывается системой линейных дифференциальных уравнений вида

Большая Советская Энциклопедия (СП) i-images-151683460.png
, где х есть n-мерный вектор отклонений обобщённых координат системы от их равновесных значений, а А — симметрическая положительно определённая матрица. Такое движение может быть представлено в виде наложения n гармонических колебаний (т. н. нормальных колебаний) с круговыми частотами, равными корням квадратным из всевозможных собственных значений l k матрицы А. Нахождение нормальных колебаний системы здесь сводится к нахождению всех собственных значений lk; и собственных векторов xk матрицы А. Совокупность всех собственных значений матрицы называют её спектром. Если матрица А — симметрическая, то её спектр состоит из n действительных чисел l1, ..., ln (некоторые из них могут совпадать друг с другом), а сама матрица с помощью перехода к новой системе координат может быть приведена к диагональному виду, т. е. отвечающее ей линейное преобразование А в n-мерном пространстве (т. н. самосопряжённое преобразование) допускает специальное представление — т. н. спектральное разложение вида

Большая Советская Энциклопедия (СП) i-images-182391424.png

  где E1,..., En операторы проектирования на взаимно перпендикулярные направления собственных векторов х1, ......, xn. Несимметрическая же матрица А (которой отвечает несамосопряжённое линейное преобразование) имеет, вообще говоря, спектр, состоящий из комплексных чисел l1, ..., l1, и может быть преобразована лишь к более сложной, чем диагональная, жордановой форме [см. Нормальная (жорданова) форма матриц], отвечающей представлению линейного преобразования А, более сложному, чем описанное выше обычное спектральное разложение.

  При изучении колебаний около состояния равновесия систем с бесконечным числом степеней свободы (например, однородной или неоднородной струны) задачу о нахождении собственных значений и собственных векторов линейного преобразования в конечномерном пространстве приходится распространить на некоторый класс линейных преобразований (т. е. линейных операторов) в бесконечномерном линейном пространстве. Во многих случаях (включая, в частности, и случай колебания струны) соответствующий оператор может быть записан в виде действующего в пространстве функций f(x) интегрального оператора А, так что здесь


Перейти на страницу:
Изменить размер шрифта: