Действительно, каждый человек формулирует единственно возможную гипотезу, используя имеющиеся знакомые фигуры (в данном случае Т-образный элемент). Тем не менее такая гипотеза, сколь бы точно она ни формулировалась на языке Т-образных элементов, всего лишь предполагает (но не доказывает), что данная фигура должна иметь именно такую форму. Единственным доказательством гипотезы является ее полезность, и, пока полезность продолжает иметь место, гипотеза остается в силе. Однако даже полезность не должна препятствовать поискам лучшей гипотезы, которая, возможно, будет использовать при описании другие знакомые фигуры.
Когда мы описывали вышеприведенные фигуры, полностью доступные восприятию, мы могли использовать любой метод описания, однако, когда мы имеем дело с частично закрытыми фигурами, любая примененная в этом случае гипотеза может оказаться непригодной.
Одной из главных задач мышления является необходимость постоянного уяснения разного рода незнакомых ситуаций. Как правило, имеется некоторая фигура, которую требуется уяснить с помощью сочетания уже знакомых фигур. Сочетание знакомых фигур всегда направлено к какому-то практическому результату, в котором постоянно используется все увеличивающийся набор знакомых фигур и их соотношений.
Однако существует и другой метод использования знакомых фигур. Фигуры могут быть составлены совершенно произвольно, по любому образцу или же на основании законов гармонии. Подобные сочетания составляются исключительно ради самих сочетаний.
Такого рода игра со знакомыми фигурами, казалось бы, абсолютно бесцельна, и тем не менее она может оказаться весьма полезной. В ходе игры могут возникнуть интересные сочетания, которые дополнят список знакомых фигур и будут в такой же степени полезными, как и те, что были получены в ходе описания незнакомых фигур. Фигуры, случайно полученные в процессе игры, могут помочь объяснить фигуры, которые ранее не были объяснены. Процесс игры, строящейся на чистом случае, нередко приводит к таким сочетаниям, которых, быть может, никогда бы не удалось достичь каким-либо иным путем.
На рис. 23, 24 и 25 приведены сочетания обычных Т-образных элементов, возникшие в ходе игры. Эти сочетания получились без всякого намерения или заранее обдуманного плана; кроме того, каких-то особых причин для отбора именно этих сочетаний из неограниченного количества других не было.
Из соединения этих сочетаний получились фигуры, показанные на рис. 26, 27 и 28. Эти фигуры интересны сами по себе, и, не будь они собраны нами из Т-образных элементов, нам было бы нелегко объяснить их на языке этих элементов.
Как фигуры, появившиеся из игровых сочетаний Т-образных элементов, пополнили список незнакомых фигур, так и их соотношения, возникшие таким же образом, пополняют свой список. В игре мы имеем возможность выявить и испробовать новые соотношения фигур и узнать о соотношениях, возникших случайно.
Игра очень полезна также и в том отношении, что она является источником появления знакомых фигур и их соотношений и источником опыта и познания. Оригинальность фигур и их соотношений, возникающих случайно во время соответствующей игры, обычно превосходит оригинальность фигур и их соотношений, которые возникают в ходе объяснения реально существующих ситуаций. Случай не знает границ, тогда как воображение ограничено.
Даже когда полезность игры не вызывает сомнений, людей, способных играть, крайне мало. Трудно намеренно делать то, что не должно быть намеренным, так же трудно, как идти в никуда.
На рис. 29 изображена еще одна геометрическая фигура, большая часть которой закрыта темным пятном.
На этот раз по сравнению с предыдущим еще большая часть фигуры недоступна исследованию. Весьма сомнительно, можно ли вообще получить какие-то сведения о данной фигуре из исследования ее видимых участков. Мы имеем возможность, как и раньше, испробовать множество различных гипотетических сочетаний основного Т-образного элемента. Поскольку в пашем распоряжении имеется большое количество предполагаемых сочетаний, на первый взгляд полностью совпадающих с рисунком, мы не в состоянии сказать определенно, какое из этих сочетаний следует использовать. Поэтому мы еще и еще раз вынуждены обращаться к скрытой под пятном фигуре и внимательно ее изучать. В результате мы убеждаемся, что для фигуры, изображенной на рис. 29, сочетание Т-образных элементов, по-видимому, неприменимо.
Рис. 30 предлагает наиболее вероятное приближение к фигуре, показанной на рис. 29, которое можно получить из Т-образных элементов. Однако мы видим, что составленная фигура не идентична той, которая изображена на рис. 29. Но если все же необходимо иметь какую-то гипотезу (иногда ради того, чтобы начать действовать), то в таком случае любое более или менее объясняющее ситуацию приближение может оказаться оправданным. Наряду с полезностью такой приближенной гипотезы, всегда есть надежда, что в дальнейшем, по мере использования, ее можно будет или усовершенствовать, или заменить другой. Разумеется, если требуется решить какую-то проблему, то просто бессмысленно ожидать появления лучшей гипотезы, вместо того чтобы начать действовать, используя любую гипотезу. Но в то же время иногда, быть может, лучше ничего не делать, чем делать не то, что надо (при условии, конечно, что само бездействие не является ошибкой). Основная опасность использования гипотезы, которая наверняка не соответствует действительности, заключается в том, что она может препятствовать появлению лучшей. Благодаря постоянному применению и некоторой доли полезности такой гипотезы ее несоответствие действительной ситуации постепенно забывается, поскольку живое сравнение с первоначальной ситуацией также вскоре забылось.
Когда с фигуры на рис. 29 удалили пятно, то под ним оказалась фигура, представленная на рис. 31. Она состояла не из знакомых нам Т-образных, а из L-образных элементов. Возможно, пас уличат в нечестности, так как единственно знакомыми фигурами, которые были допущены в нашей игре, были Т-образные элементы. Но если отвлечься от этого обвинения, то введение L-образного элемента свидетельствует об одном очень существенном моменте, на который указывает также сам факт уличения нас в нечестности.
Дело в том, что L-образный элемент не является чем-то существенно отличным от Т-образного. Он совсем не нов и достаточно известен. На рис. 32 показано, что его легко получить из Т-образного элемента простым отсечением одного плеча. Таким образом, Т-образный элемент потенциально содержал в себе L-образный.
Элемент Т — не священный и не неизменный, хотя тот факт, что он постоянно и повсеместно успешно применялся, мог привести к такому предположению. Т-образный элемент всегда был и остается произвольно созданным в целях удобства; разбивая на него незнакомые фигуры, мы имеем возможность описать их. Как более крупный блок можно разбить на Т-образные элементы, так и сам Т-образный элемент можно произвольно разбить на более мелкие части.
Выше мы показали, каким образом несколько Т-образных элементов можно объединить в стандартные блоки, с тем чтобы получить более крупные основные элементы, облегчающие описание сложных фигур. Было указано, что эти более крупные элементы в силу их громоздкости обладают меньшей универсальной полезностью, чем собственно Т-образный элемент. Аналогичным образом и сам Т-образный элемент можно рассматривать как стандартное соединение L-образного элемента с коротким бруском. Бывают случаи, когда и это стандартное соединение оказывается слишком крупным и непригодным для описания, поэтому его следует разбить па более мелкие элементы с более широкой сферой применения. Таким образом Т-образный элемент сам может быть разбит на составные части.