Для чего же нужна аннигиляционная энергия антивещества с калорийностью, в 100–300 раз превышающей калорийность ядерного топлива? Возможно, в далеком будущем она понадобится только для космических аппаратов. Для земной энергетики такой процесс не подходит.

Пожалуй, стоит рассказать еще об одной идее, которая родилась на заре работ по термоядерному синтезу.

Напомним: чтобы осуществить термоядерную реакцию, нужно разогреть плазму до 100–150 миллионов градусов. Лишь такая температура может обеспечить высокие скорости ядер, достаточные для преодоления силы отталкивания их положительных зарядов. Но допустим, что удалось бы нейтрализовать заряд одной из взаимодействующих частиц. При таком условии отпала бы необходимость в высокой температуре.

В природе существует некая элементарная частица, которая называется отрицательным мю-мезоном. Его заряд равен электронному, а масса в 212 раз больше. Если этот мю-мезон соединить, например, с дейтерием, то может образоваться новый атом, в котором электрон атома дейтерия будет заменен мю-мезоном. Поскольку масса мю-мезона в две сотни раз больше массы электрона, то вокруг ядра он будет вращаться по орбите, лежащей во столько же раз ближе к ядру, чем орбита электрона. Благодаря тому, что эта система нейтральна и очень мала, она может очень близко подойти к другому ядру дейтерия, лишенному электрона (иону), и образовать молекулярный ион дейтерия, в котором вокруг двух очень близко расположенных ядер дейтерия вместо электрона будет вращаться мю-мезон. Расчеты показывают, что в этом случае очень велика вероятность того, что даже при не очень высокой температуре ядра дейтерия вступят в реакцию синтеза и начнет выделяться энергия. При этом процессе мю-мезон будет невредимым выброшен и сможет снова вызывать реакцию другой пары, потом третьей, потом…

К сожалению, «потом» может не быть. Время жизни мю-мезона всего несколько миллионных долей секунды. Окончив свою «деятельность», он распадается на электрон и два нейтрино. Так что за отпущенное ему время он сможет инициировать синтез всего нескольких пар ядер. Выделившаяся при этом энергия составит малую долю той энергии, которую необходимо затратить на создание самого мю-мезона. Значит, такой синтез не имеет практической ценности для энергетики.

Что же показывают эти два примера «неудачной попытки» еще более эффективного и более легкого использования энергии ядра в энергетике? Возможно, пессимист скажет, что они подтверждают сказанное ранее: пока нет других, более эффективных способов высвобождения- энергии ядра. Оптимист ответил бы по-другому: наличие таких «почти пригодных» способов позволяет надеяться и показывает, что где-то рядом, пока еще скрытые от нас, существуют процессы, познав которые человек станет обладать еще большими запасами дешевой и нужной энергии. Надо только их искать. И ученые ищут.

Теоретики считают, что если получить уран в изомерном состоянии, то при делении, по-видимому, можно будет получить не 2,5, а, скажем, 5 свободных нейтронов. Почему это важно, мы увидим позже.

Теоретически показана возможность существования сверхплотных ядер. Пока трудно говорить о возможностях их использования, но стоит обратить внимание на то, что сверхплотные ядра должны обладать запасами внутренней энергии в тысячи раз большей, чем обычные ядра.

В энергетике, по-видимому, можно было бы использовать и ядра нейтронные, то есть состоящие почти из одних этих частиц. О такой возможности говорит теория.

КАК РАЗДЕЛИТЬ ЯДРО

Ценнейшее в жизни качество — вечно юное любопытство, не утоленное годами и возрождающееся каждое утро.

Ромен Роллан

В одном из номеров журнала «Иностранная литература» был напечатан памфлет «Законы Паркинсона».

В острой сатирической форме автор рассказал, в частности, о заседании парламентариев, рассматривавших новые финансовые законопроекты. Около трех часов ушло на обсуждение такого «важного» законопроекта, как выдавать ли парламентариям в перерыве между заседаниями бесплатный кофе (стоимостью в несколько пенсов). По этому поводу почти каждый счел своим долгом высказать мнение потому, что вопрос этот был известен и близок каждому депутату. Другое дело — проведение законопроекта… о строительстве ядерного реактора (стоимостью в несколько миллионов фунтов стерлингов). На это ушло меньше пяти минут, ибо высказываться не хотел никто. Не хотел? Вернее, не мог. Ведь для этого нужно обладать знаниями. А что такое ядерный реактор — парламентарии имели о нем самое общее представление.

В этом анекдоте есть доля правды. Как ни удивительно, но в век атомной энергетики и покорения космоса очень многие ничего или почти ничего не знают о ядерном реакторе, об атомной энергетике, которая гигантскими шагами входит в нашу жизнь. Может быть, причина этого в удивительно быстром развитии знаний ученых о тайнах атома? Может быть, это развитие настолько стремительное, что за ним не поспевает ясная и правдивая информация? А может быть, виновным является и сам ядерный реактор: ведь понимание процессов, происходящих при его работе, очень непростая вещь. В этом отношении он довольно парадоксален. Вот пример: чтобы сделать простейший реактор, не нужно знать почти ничего, кроме, пожалуй… рецепта, подобного рецепту, взятому из поваренной книги.

Выглядеть такой рецепт мог бы так. «Возьмите алюминиевый бак. Наполните его 20 литрами дистиллированной воды, засыпьте 3800 граммов уранил-нитрата (уран с азотом), тщательно перемешайте смесь стальной ложкой. Затем быстро выньте ложку, и вы получите работающий ядерный реактор».

Конечно, это шутка. Однако в принципе именно так может выглядеть гомогенный (однородный) ядерный реактор на тепловых нейтронах. Но как, не имея опыта домашней хозяйки, а руководствуясь только рецептом, можно приготовить не обед, а лишь нечто с ним схожее, так, не зная принципов работы реактора, не имея необходимых контрольных приборов, можно получить бак с грязной водой, а если и реактор, то такой, которым невозможно управлять.

Хотя о существовании больших запасов энергии в ядре атома было известно очень давно, понадобилось несколько десятилетий исканий, расширения знаний о свойствах ядер атомов, длинная цепочка интересных, открытий, приведших к созданию ядерного реактора, — устройства, в котором освобождается энергия деления ядра.

Ядра со «знаком качества»

Чтобы разделить ядро и вызвать высвобождение внутренней энергии, нужно выбрать «инструмент», сравнимый с размером самого ядра — ведь никто не станет разбивать грецкий орех паровым молотом. Непригоден он и для разделения ядра. Его и не разбить таким инструментом.

Мы уже знаем несколько частиц, сравнимых с размером ядра. Перечислим их. Прежде всего это само же ядро. Затем нейтрон и протон. Пока достаточно. Они пригодны в качестве инструмента. А теперь стоит уточнить, какими свойствами этот инструмент должен обладать.

Чтобы расколоть полено, разбить камень или распилить железную заготовку — мало иметь остро отточенный топор, удобный молоток или пилу, нужно еще затратить энергию. Нельзя забывать, что материалы бывают капризные: каждому нужна только «его» энергия — та, с помощью которой можно этот материал обработать.

Чтобы разделить ядро, нужно затратить энергию, различную для разных ядер.

При изучении строения атома и его ядра обычно возникает вопрос: почему ядро не разваливается само по себе? Ведь входящие в его состав протоны электрически заряжены, следовательно, они должны отталкиваться друг от друга с большой силой. Почему же этого не происходит? Объясняется это тем, что внутри ядра действуют еще так называемые внутриядерные силы, притягивающие друг к другу частицы ядра. Силы эти велики, но действуют только на очень близком расстоянии, поэтому их называют короткодействующими. Они-то и компенсируют — гасят силы электрического отталкивания протонов и не дают ядру самопроизвольно распасться.


Перейти на страницу:
Изменить размер шрифта: